Module imodelsx.iprompt.prompt_tune
Expand source code
from typing import Any, Dict, Iterable, Optional, Tuple
import argparse
import torch
import torch.nn as nn
import transformers
from imodelsx.iprompt.utils import PrefixLoss, PrefixModel
class PromptTunedModel(PrefixModel):
args: argparse.Namespace
loss_func: PrefixLoss
model: transformers.PreTrainedModel
tokenizer: transformers.PreTrainedTokenizer
prefix_embedding: nn.Parameter
def __init__(self, args: argparse.Namespace, loss_func: PrefixLoss, model: transformers.PreTrainedModel, tokenizer: transformers.PreTrainedTokenizer, preprefix: str):
super().__init__(args=args, loss_func=loss_func, model=model, tokenizer=tokenizer, preprefix=preprefix)
self.prefix_embedding = self.init_continuous_prefix(num_tokens=args.num_learned_tokens)
def embed_input_ids(self, input_ids: torch.Tensor, prefix_ids: Optional[torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
assert prefix_ids is None, "cannot provide custom prefix IDs for prompt-tuning"
token_embeddings = self.token_embedding.forward(input_ids)
return None, torch.cat(
(self.prefix_embedding.repeat((len(input_ids), 1, 1)), token_embeddings), dim=1
)
@property
def trainable_params(self) -> Iterable[nn.Parameter]:
return [self.prefix_embedding]
def serialize(self):
save_dir = self.args.save_dir_unique
os.makedirs(save_dir, exist_ok=True)
torch.save(self.prefix_embedding, open(os.path.join(save_dir, 'prefix_embedding.p'), 'wb'))
def compute_metrics(self) -> Dict[str, Any]:
return {
'embs': self.prefix_embedding.detach().cpu().numpy(),
'grads': self.prefix_embedding.grad.detach().cpu().numpy(),
}
Classes
class PromptTunedModel (args: argparse.Namespace, loss_func: PrefixLoss, model: transformers.modeling_utils.PreTrainedModel, tokenizer: transformers.tokenization_utils.PreTrainedTokenizer, preprefix: str)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class PromptTunedModel(PrefixModel): args: argparse.Namespace loss_func: PrefixLoss model: transformers.PreTrainedModel tokenizer: transformers.PreTrainedTokenizer prefix_embedding: nn.Parameter def __init__(self, args: argparse.Namespace, loss_func: PrefixLoss, model: transformers.PreTrainedModel, tokenizer: transformers.PreTrainedTokenizer, preprefix: str): super().__init__(args=args, loss_func=loss_func, model=model, tokenizer=tokenizer, preprefix=preprefix) self.prefix_embedding = self.init_continuous_prefix(num_tokens=args.num_learned_tokens) def embed_input_ids(self, input_ids: torch.Tensor, prefix_ids: Optional[torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: assert prefix_ids is None, "cannot provide custom prefix IDs for prompt-tuning" token_embeddings = self.token_embedding.forward(input_ids) return None, torch.cat( (self.prefix_embedding.repeat((len(input_ids), 1, 1)), token_embeddings), dim=1 ) @property def trainable_params(self) -> Iterable[nn.Parameter]: return [self.prefix_embedding] def serialize(self): save_dir = self.args.save_dir_unique os.makedirs(save_dir, exist_ok=True) torch.save(self.prefix_embedding, open(os.path.join(save_dir, 'prefix_embedding.p'), 'wb')) def compute_metrics(self) -> Dict[str, Any]: return { 'embs': self.prefix_embedding.detach().cpu().numpy(), 'grads': self.prefix_embedding.grad.detach().cpu().numpy(), }
Ancestors
- PrefixModel
- torch.nn.modules.module.Module
- abc.ABC
Class variables
var args : argparse.Namespace
var loss_func : PrefixLoss
var model : transformers.modeling_utils.PreTrainedModel
var prefix_embedding : torch.nn.parameter.Parameter
var tokenizer : transformers.tokenization_utils.PreTrainedTokenizer
Instance variables
var trainable_params : Iterable[torch.nn.parameter.Parameter]
-
Expand source code
@property def trainable_params(self) -> Iterable[nn.Parameter]: return [self.prefix_embedding]
Methods
def compute_metrics(self) ‑> Dict[str, Any]
-
Expand source code
def compute_metrics(self) -> Dict[str, Any]: return { 'embs': self.prefix_embedding.detach().cpu().numpy(), 'grads': self.prefix_embedding.grad.detach().cpu().numpy(), }
Inherited members