

csinva23@gmail.com

csinva

csinva

csinva

education

phd | machine learning

uc berkeley | '17-'22 research: interpretable ml advisor: bin yu

bs | cs & math

university of virginia | '14-'17 double major

skills

language models | deep learning data science | data cleaning huggingface | pytorch rule-based models | causal inference

awards

berkeley grad slam semifinalist '19, '22 pdsoros fellowship finalist '19 outstanding teaching award '18 uva rader research award '17 uva undergrad symposium winner '17 raven honor society '16-'17 icpc regional qualification '14-'16 1st place microsoft code jam '16 3rd place google games uva '17 2nd place apt puzzle competition '17 rodman scholarship '14-'17

teaching

berkeley | summer 2018 machine learning: cs 189/289 % lectures to class of 80+ students

berkeley | fall 2019 artificial intelligence: cs 188 %

service

volunteering

basis education volunteering '19-'22 bair undergrad mentoring '18-'22 computer literacy volunteering '15-'17

area chair

xxai workshop '24 | ml4h '24

reviewer

arr,iclr,icml '25 | iclr,icml,neurips '24 neurips '23 | acl '22 iclr,cvpr,aaai,neurips '21 | neurips '20

experience

microsoft research

senior researcher (deep learning group) | summer '22 - present

csinva.io

- improving the interpretability of large language models
- researching knowledge discovery with large language models
- building next-generation foundation models

health tech

paige ai | research scientist | summer '21 - summer '22

• interpretable deep learning in digital pathology (especially bladder cancer)

response4life | volunteer data scientist | spring '20

• helped develop, integrate, and deploy models to forecast covid-19 severity

pacmed ai | healthcare ml intern | summer '19

• developed interpretable, tabular machine-learning models for healthcare

pho

berkeley | interpretable ml research (bin yu group) | fall '17 - spring '22

- developed post-hoc interpretation methods for ml models (e.g. neural nets)
- developed interpretable models in medicine, biology, and computer vision

aws | ml fairness intern (pietro perona group) | summer '20

testing for bias with causal matching using GANs

meta ai | computer vision intern | summer '17

• investigated unsupervised deep learning for segmentation of satellite imagery

undergrad

hhmi | ml research (srini turaga group) | summer '14, '15, '16

• researched neural image segmentation and biophysical simulations

uva | ml research (yanjun qi group) | fall '16 - spring '17

• developed multi-task graphical models for analyzing functional brain connectivity

uva | comp. neuroscience research (william levy group) | fall '14 - fall '16

• developed biophysical models of single-neuron computation

selected publications

interpretability \times language models \rightarrow neuroscience

- augmenting interpretable models with llms: cs, et al. nature comm., '23 % </>
- generative causal testing with llms: antonello*, cs*, et al. arxiv, '24 % </>
- interpretable embeddings by asking Ilms questions benara*, cs*, et al. neurips, '24 %

interpretability × rules → clinical decision rules

- fast interpretable greedy-tree sums: tan*, cs*, nasseri*, agarwal* et al. pnas '22 % </>>
- hierarchical tree shrinkage: agarwal*, tan*, ronen, cs, & yu icml '22 % </>
- imodels: an interpretability package: cs*, nasseri*, tan, tang, & yu, joss '21 % </>>

interpretability \times deep learning \rightarrow general domain

- adaptive wavelet distillation from dnns: ha, cs, et al. neurips '21 % </>>
- aligning dnns by regularizing explanations: rieger, cs, et al. icml '20 % </>>
- hierarchical interpretations for dnn predictions: cs*, murdoch*, & yu, iclr '19 % </>