Optimizing Random-Forest Image Segmentation

Background

Algorithm Part Il: MALIS Gradient Boosting

Recent advancements in neuroscience have allowed When looking at segmentations, small errors can lead

scientists to start creating maps of neural connections to large mistakes in segmentation. The standard way of '

in the brain known as connectomes. However, to training random forests is to minimize the pixel-wise

construct a connectome, brain tissue must be imaged,

QQQQQ

.....
.....

the images must be

oninL ®ASIR
.Am LLLLLLLLLLLLLL
ADLR
||||||| OASEL 'AWBbAWB.RPLNR epvaPAPLLeALML ° °
EPQ! ASPASGR esoaL epppic0stit ¥
- segmented to iden
ﬁ? ® MOBAGL FREEL °A oADER QBWHRQ;DEEQML B d@ﬂm
URXL . AAAAAAAAAAAA 9
@AFDR eOLLL S oriPALNL e ViiHsNR :;\L,’x;
i :
00000 IS BX
4R APA e SouR SEEATENS RS eaoan "T’QV“-AQS"::'WL P WWevcn
o LR SUYOR Ll esaan : neurons, an en
oIL1D|(_WR otRiite Uw%w SMEVERMFLyo\ s vR \&%\I{QL.AW‘%WWC)6\ PA ,
LLLLLLLLLLLL N Swgg&ghﬁv ®AVKL AVL Sl i
F
T AR A '
A W g neural connections mus
IhOR ?ﬁ%‘% aaaaa Bi{yey BPBI06
ARG osABEY pargi 0 0844 DB 0}
RMDR 5
. g\r)nL DDDDDD T A N o ég%w&ﬁﬁé}p °
°°°°°°°°°°°°°°°°°°°°°°°°°°° be determined
6 VDi []

5
oooooooo

Teew o Segmenting neurons is a

slow and arduous
process when done by humans, and this project
focuses on segmenting neurons efficiently and robustly
with machine learning. There are challenges
segmenting neurons with computers because segments
in images can be miniscule and small errors can lead to
entire neurons being merged or disconnected.

Connectome for the simple |
network of C. Elegans [4]

Algorithm Part I: Random Forests
The core algorithm used was a machine learning
technigue known as decision trees. In this case, the
decision trees used features extracted from images in
order to predict whether a specific pixel was connected
to its neighbors.

Extracted Features
Center Pixel Light

_eft Pixel Dark
Right Pixel Light
d/dx Negative
Raw Image N _
~~
da‘rf Center Pixel ight
i
Left Pixel N
d/dx
~—T S
Py 1 = 1
d/dx Right Pixel Right Pixel Left Pixel
~— ~— ~—
=N = - R - AN
.02 .98 13 87 11 .39 .88 12
N— N— N— N— N— N N—r N—

For each pixel, a local set of pixels, and their derivatives in
different directions is fed into the decision tree which outputs
whether or not the pixel is connected to its neighbors.

The decision trees split based on the values of the
features to derive probabilities of different outputs.
They pass through the training data and sort the
possible outputs based on the input features. Then
they prioritize features as splits in the tree in order to
minimize the uncertainty of the output (as measured by
a loss function such as entropy.) Many decision trees
were trained and their predictions were averaged in
order to give the final output; this setup is known as a
random forest.

error produced in the segmentations. However, this is
not always the best way to produce accurate
segmentations. Take the following example:

1 i

Comparison of correct segmentation (left) to segmentations with
different pixel errors (Based on [1]). Having less pixel errors
doesn’t necessarily lead to a better segmentation.

In order to adjust for this, we aim to minimize the Rand
Index, which measures the proportion of pixel pairs
which are correctly labelled as being in the same
segment [1]. To minimize the Rand Index, we use MALIS
(maximin affinity learning of segmentation), an

errors in segmentation [2]. Generally, the algorithm
looks at the paths between pixels and tries to find the
path that maximizes the minimum affinity. The edge on
this path with the minimum affinity is altered in order
to produce a more accurate segmentation.

Implementation

A large part of this project was parallelizing code so it =

could train faster. Decision trees can train
independently of one another and thus can be trained
simultaneously. Parallelizing the algorithm allows
training on massive data sets without increasing the
training time. This is done by splitting the data into
subvolumes which are processed independently and
then aggregated. Additionally, speed was obtained by
making calls to compiled C++ functions. This algorithm
was implemented using Scala and Apache Spark [3].
Using Spark, the program was run in parallel on the
Janelia cluster, which provided a linear speed-up in
time as shown below.

100 Speed-ups Provided by Parallelization
90

80

~
o

)
Q .
£ 60 O Training
c Tree
S 50
Q
c 40
=
30
Calculating
20 gradients

=
o

o

8/1 64/8 16/1 125/8

Number of subvolumes of data / number of worker nodes

Increasing the amount of data and nodes proportionally doesn’t
slow down program.

—
@)
-

wn

w 0.4r

algorithm which specifically targets pixels that cause 5os|

Key differences in the segmentation (left), labels (second),
predictions (third), MALIS changes (fourth)

Several parameters were manipulated in order to train
the most accurate forests. For example, the number of
features and the locations of the features extracted for
each pixel were changed. The parameters for MALIS
were tested until they were working as shown above.

Finally, after training a forest and gradient boosting, the
following performance was achieved:

Rand F-Score Rand Error ROC

0.8

0.7

©
o0

0.6

0.5F

True Positive
o
(@))

&
N

0.2

&
N

0.1F

o

O 1 1
0.97 0.975 0.98

0.2 0.4 0.6 0.8
False Positive

o

0.985 0.99 0.995 1

Threshold

Pixel Error Pixel Error ROC

testing
0.09 . training
0.8F

0.6

True Positive

0.06

0.05

0.04

0.03

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
Threshold False Positive

Key statistics on the segmentation performance.

These preliminary results show that the algorithm could
be very effective at quickly producing high-quality
Image segmentations.

References
[1] W. Rand. Objective criteria for the evaluation of clustering
methods. Journal of the American Statistical association, pages
846-850, 1971.
[2] Briggman, K., Denk, W., Seung, S., Helmstaedter, M. N., &
Turaga, S. C. (2009). Maximin affinity learning of image
segmentation. In Advances in Neural Information Processing
Systems (pp. 1865-1873).
[3] Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S,,
Liu, D., ... & Talwalkar, A. (2015). MLlib: Machine Learning in
Apache Spark. arXiv preprint arXiv:1505.06807.
[4] http://connectomethebook.com/wp-content/uploads/
2011/11/Brainforest16 _1119-640x356.jpg

