Module acd.util.conv2dnp

code from https://github.com/renmengye/np-conv2d

Expand source code
'''code from https://github.com/renmengye/np-conv2d
'''

from __future__ import division

import numpy as np


def calc_pad(pad, in_siz, out_siz, stride, ksize):
    """Calculate padding width.

    Args:
        pad: padding method, "SAME", "VALID", or manually speicified.
        ksize: kernel size [I, J].

    Returns:
        pad_: Actual padding width.
    """
    if pad == 'SAME':
        return (out_siz - 1) * stride + ksize - in_siz
    elif pad == 'VALID':
        return 0
    else:
        return pad


def calc_size(h, kh, pad, sh):
    """Calculate output image size on one dimension.

    Args:
        h: input image size.
        kh: kernel size.
        pad: padding strategy.
        sh: stride.

    Returns:
        s: output size.
    """

    if pad == 'VALID':
        return np.ceil((h - kh + 1) / sh)
    elif pad == 'SAME':
        return np.ceil(h / sh)
    else:
        return int(np.ceil((h - kh + pad + 1) / sh))


def extract_sliding_windows_gradw(x,
                                  ksize,
                                  pad,
                                  stride,
                                  orig_size,
                                  floor_first=True):
    """Extracts dilated windows.

    Args:
        x: [N, H, W, C]
        k: [KH, KW]
        pad: [PH, PW]
        stride: [SH, SW]

    Returns:
        y: [N, H', W', KH, KW, C]
    """
    n = x.shape[0]
    h = x.shape[1]
    w = x.shape[2]
    c = x.shape[3]
    kh = ksize[0]
    kw = ksize[1]
    sh = stride[0]
    sw = stride[1]

    h2 = orig_size[0]
    w2 = orig_size[1]
    ph = int(calc_pad(pad, h, h2, 1, ((kh - 1) * sh + 1)))
    pw = int(calc_pad(pad, w, w2, 1, ((kw - 1) * sw + 1)))

    ph2 = int(np.ceil(ph / 2))
    ph3 = int(np.floor(ph / 2))
    pw2 = int(np.ceil(pw / 2))
    pw3 = int(np.floor(pw / 2))
    if floor_first:
        pph = (ph3, ph2)
        ppw = (pw3, pw2)
    else:
        pph = (ph2, ph3)
        ppw = (pw2, pw3)
    x = np.pad(
        x, ((0, 0), (ph3, ph2), (pw3, pw2), (0, 0)),
        mode='constant',
        constant_values=(0.0,))
    p2h = (-x.shape[1]) % sh
    p2w = (-x.shape[2]) % sw
    if p2h > 0 or p2w > 0:
        x = np.pad(
            x, ((0, 0), (0, p2h), (0, p2w), (0, 0)),
            mode='constant',
            constant_values=(0.0,))
    x = x.reshape([n, int(x.shape[1] / sh), sh, int(x.shape[2] / sw), sw, c])

    y = np.zeros([n, h2, w2, kh, kw, c])
    for ii in range(h2):
        for jj in range(w2):
            h0 = int(np.floor(ii / sh))
            w0 = int(np.floor(jj / sw))
            y[:, ii, jj, :, :, :] = x[:, h0:h0 + kh, ii % sh, w0:w0 + kw, jj %
                                                                          sw, :]
    return y


def extract_sliding_windows_gradx(x,
                                  ksize,
                                  pad,
                                  stride,
                                  orig_size,
                                  floor_first=False):
    """Extracts windows on a dilated image.

    Args:
        x: [N, H', W', C] (usually dy)
        k: [KH, KW]
        pad: [PH, PW]
        stride: [SH, SW]
        orig_size: [H, W]

    Returns:
        y: [N, H, W, KH, KW, C]
    """
    n = x.shape[0]
    h = x.shape[1]
    w = x.shape[2]
    c = x.shape[3]
    kh = ksize[0]
    kw = ksize[1]
    ph = pad[0]
    pw = pad[1]
    sh = stride[0]
    sw = stride[1]
    h2 = orig_size[0]
    w2 = orig_size[1]
    xs = np.zeros([n, x.shape[1], sh, x.shape[2], sw, c])
    xs[:, :, 0, :, 0, :] = x
    xss = xs.shape
    x = xs.reshape([xss[0], xss[1] * xss[2], xss[3] * xss[4], xss[5]])
    x = x[:, :h2, :w2, :]

    ph2 = int(np.ceil(ph / 2))
    ph3 = int(np.floor(ph / 2))
    pw2 = int(np.ceil(pw / 2))
    pw3 = int(np.floor(pw / 2))
    if floor_first:
        pph = (ph3, ph2)
        ppw = (pw3, pw2)
    else:
        pph = (ph2, ph3)
        ppw = (pw2, pw3)
    x = np.pad(
        x, ((0, 0), pph, ppw, (0, 0)),
        mode='constant',
        constant_values=(0.0,))
    y = np.zeros([n, h2, w2, kh, kw, c])

    for ii in range(h2):
        for jj in range(w2):
            y[:, ii, jj, :, :, :] = x[:, ii:ii + kh, jj:jj + kw, :]
    return y


def extract_sliding_windows(x, ksize, pad, stride, floor_first=True):
    """Converts a tensor to sliding windows.

    Args:
        x: [N, H, W, C]
        k: [KH, KW]
        pad: [PH, PW]
        stride: [SH, SW]

    Returns:
        y: [N, (H-KH+PH+1)/SH, (W-KW+PW+1)/SW, KH * KW, C]
    """
    n = x.shape[0]
    h = x.shape[1]
    w = x.shape[2]
    c = x.shape[3]
    kh = ksize[0]
    kw = ksize[1]
    sh = stride[0]
    sw = stride[1]

    h2 = int(calc_size(h, kh, pad, sh))
    w2 = int(calc_size(w, kw, pad, sw))
    ph = int(calc_pad(pad, h, h2, sh, kh))
    pw = int(calc_pad(pad, w, w2, sw, kw))

    ph0 = int(np.floor(ph / 2))
    ph1 = int(np.ceil(ph / 2))
    pw0 = int(np.floor(pw / 2))
    pw1 = int(np.ceil(pw / 2))

    if floor_first:
        pph = (ph0, ph1)
        ppw = (pw0, pw1)
    else:
        pph = (ph1, ph0)
        ppw = (pw1, pw0)
    x = np.pad(
        x, ((0, 0), pph, ppw, (0, 0)),
        mode='constant',
        constant_values=(0.0,))

    y = np.zeros([n, h2, w2, kh, kw, c])
    for ii in range(h2):
        for jj in range(w2):
            xx = ii * sh
            yy = jj * sw
            y[:, ii, jj, :, :, :] = x[:, xx:xx + kh, yy:yy + kw, :]
    return y


def conv2dnp(x, w, pad='SAME', stride=(1, 1)):
    """2D convolution (technically speaking, correlation).

    Args:
        x: [N, H, W, C]
        w: [I, J, C, K]
        pad: [PH, PW]
        stride: [SH, SW]

    Returns:
        y: [N, H', W', K]
    """
    ksize = w.shape[:2]
    x = extract_sliding_windows(x, ksize, pad, stride)
    ws = w.shape
    w = w.reshape([ws[0] * ws[1] * ws[2], ws[3]])
    xs = x.shape
    x = x.reshape([xs[0] * xs[1] * xs[2], -1])
    y = x.dot(w)
    y = y.reshape([xs[0], xs[1], xs[2], -1])
    return y


def conv2d_gradw(x, dy, ksize, pad='SAME', stride=(1, 1)):
    """2D convolution gradient wrt. filters.

    Args:
        dy: [N, H', W', K]
        x: [N, H, W, C]
        ksize: original w ksize [I, J].

    Returns:
        dw: [I, J, C, K]
    """
    dy = np.transpose(dy, [1, 2, 0, 3])
    x = np.transpose(x, [3, 1, 2, 0])
    ksize2 = dy.shape[:2]
    x = extract_sliding_windows_gradw(x, ksize2, pad, stride, ksize)
    dys = dy.shape
    dy = dy.reshape([dys[0] * dys[1] * dys[2], dys[3]])
    xs = x.shape
    x = x.reshape([xs[0] * xs[1] * xs[2], -1])
    dw = x.dot(dy)
    dw = dw.reshape([xs[0], xs[1], xs[2], -1])
    dw = np.transpose(dw, [1, 2, 0, 3])
    dw = dw[:ksize[0], :ksize[1], :, :]
    return dw


def conv2d_gradx(w, dy, xsize, pad='SAME', stride=(1, 1)):
    """2D convolution gradient wrt. input.

    Args:
        dy: [N, H', W', K]
        w: [I, J, C, K]
        xsize: Original image size, [H, W]

    Returns:
        dx: [N, H, W, C]
    """
    ksize = w.shape[:2]

    if pad == 'SAME':
        dys = dy.shape[1:3]
        pad2h = int(
            calc_pad('SAME',
                     max(dys[0], dys[0] * stride[0] - 1), xsize[0], 1, ksize[
                         0]))
        pad2w = int(
            calc_pad('SAME',
                     max(dys[0], dys[0] * stride[1] - 1), xsize[1], 1, ksize[
                         1]))
        pad2 = (pad2h, pad2w)
    elif pad == 'VALID':
        pad2 = (int(calc_pad('SAME', 0, 0, 1, ksize[0])),
                int(calc_pad('SAME', 0, 0, 1, ksize[1])))
        pad2 = (pad2[0] * 2, pad2[1] * 2)
    else:
        pad2 = pad
    w = np.transpose(w, [0, 1, 3, 2])
    ksize = w.shape[:2]
    dx = extract_sliding_windows_gradx(dy, ksize, pad2, stride, xsize)
    dxs = dx.shape
    dx = dx.reshape([dxs[0] * dxs[1] * dxs[2], -1])
    w = w[::-1, ::-1, :, :]
    ws = w.shape
    w = w.reshape([ws[0] * ws[1] * ws[2], ws[3]])
    dx = dx.dot(w)
    return dx.reshape([dxs[0], dxs[1], dxs[2], -1])

Functions

def calc_pad(pad, in_siz, out_siz, stride, ksize)

Calculate padding width.

Args

pad
padding method, "SAME", "VALID", or manually speicified.
ksize
kernel size [I, J].

Returns

pad_
Actual padding width.
Expand source code
def calc_pad(pad, in_siz, out_siz, stride, ksize):
    """Calculate padding width.

    Args:
        pad: padding method, "SAME", "VALID", or manually speicified.
        ksize: kernel size [I, J].

    Returns:
        pad_: Actual padding width.
    """
    if pad == 'SAME':
        return (out_siz - 1) * stride + ksize - in_siz
    elif pad == 'VALID':
        return 0
    else:
        return pad
def calc_size(h, kh, pad, sh)

Calculate output image size on one dimension.

Args

h
input image size.
kh
kernel size.
pad
padding strategy.
sh
stride.

Returns

s
output size.
Expand source code
def calc_size(h, kh, pad, sh):
    """Calculate output image size on one dimension.

    Args:
        h: input image size.
        kh: kernel size.
        pad: padding strategy.
        sh: stride.

    Returns:
        s: output size.
    """

    if pad == 'VALID':
        return np.ceil((h - kh + 1) / sh)
    elif pad == 'SAME':
        return np.ceil(h / sh)
    else:
        return int(np.ceil((h - kh + pad + 1) / sh))
def conv2d_gradw(x, dy, ksize, pad='SAME', stride=(1, 1))

2D convolution gradient wrt. filters.

Args

dy
[N, H', W', K]
x
[N, H, W, C]
ksize
original w ksize [I, J].

Returns

dw
[I, J, C, K]
Expand source code
def conv2d_gradw(x, dy, ksize, pad='SAME', stride=(1, 1)):
    """2D convolution gradient wrt. filters.

    Args:
        dy: [N, H', W', K]
        x: [N, H, W, C]
        ksize: original w ksize [I, J].

    Returns:
        dw: [I, J, C, K]
    """
    dy = np.transpose(dy, [1, 2, 0, 3])
    x = np.transpose(x, [3, 1, 2, 0])
    ksize2 = dy.shape[:2]
    x = extract_sliding_windows_gradw(x, ksize2, pad, stride, ksize)
    dys = dy.shape
    dy = dy.reshape([dys[0] * dys[1] * dys[2], dys[3]])
    xs = x.shape
    x = x.reshape([xs[0] * xs[1] * xs[2], -1])
    dw = x.dot(dy)
    dw = dw.reshape([xs[0], xs[1], xs[2], -1])
    dw = np.transpose(dw, [1, 2, 0, 3])
    dw = dw[:ksize[0], :ksize[1], :, :]
    return dw
def conv2d_gradx(w, dy, xsize, pad='SAME', stride=(1, 1))

2D convolution gradient wrt. input.

Args

dy
[N, H', W', K]
w
[I, J, C, K]
xsize
Original image size, [H, W]

Returns

dx
[N, H, W, C]
Expand source code
def conv2d_gradx(w, dy, xsize, pad='SAME', stride=(1, 1)):
    """2D convolution gradient wrt. input.

    Args:
        dy: [N, H', W', K]
        w: [I, J, C, K]
        xsize: Original image size, [H, W]

    Returns:
        dx: [N, H, W, C]
    """
    ksize = w.shape[:2]

    if pad == 'SAME':
        dys = dy.shape[1:3]
        pad2h = int(
            calc_pad('SAME',
                     max(dys[0], dys[0] * stride[0] - 1), xsize[0], 1, ksize[
                         0]))
        pad2w = int(
            calc_pad('SAME',
                     max(dys[0], dys[0] * stride[1] - 1), xsize[1], 1, ksize[
                         1]))
        pad2 = (pad2h, pad2w)
    elif pad == 'VALID':
        pad2 = (int(calc_pad('SAME', 0, 0, 1, ksize[0])),
                int(calc_pad('SAME', 0, 0, 1, ksize[1])))
        pad2 = (pad2[0] * 2, pad2[1] * 2)
    else:
        pad2 = pad
    w = np.transpose(w, [0, 1, 3, 2])
    ksize = w.shape[:2]
    dx = extract_sliding_windows_gradx(dy, ksize, pad2, stride, xsize)
    dxs = dx.shape
    dx = dx.reshape([dxs[0] * dxs[1] * dxs[2], -1])
    w = w[::-1, ::-1, :, :]
    ws = w.shape
    w = w.reshape([ws[0] * ws[1] * ws[2], ws[3]])
    dx = dx.dot(w)
    return dx.reshape([dxs[0], dxs[1], dxs[2], -1])
def conv2dnp(x, w, pad='SAME', stride=(1, 1))

2D convolution (technically speaking, correlation).

Args

x
[N, H, W, C]
w
[I, J, C, K]
pad
[PH, PW]
stride
[SH, SW]

Returns

y
[N, H', W', K]
Expand source code
def conv2dnp(x, w, pad='SAME', stride=(1, 1)):
    """2D convolution (technically speaking, correlation).

    Args:
        x: [N, H, W, C]
        w: [I, J, C, K]
        pad: [PH, PW]
        stride: [SH, SW]

    Returns:
        y: [N, H', W', K]
    """
    ksize = w.shape[:2]
    x = extract_sliding_windows(x, ksize, pad, stride)
    ws = w.shape
    w = w.reshape([ws[0] * ws[1] * ws[2], ws[3]])
    xs = x.shape
    x = x.reshape([xs[0] * xs[1] * xs[2], -1])
    y = x.dot(w)
    y = y.reshape([xs[0], xs[1], xs[2], -1])
    return y
def extract_sliding_windows(x, ksize, pad, stride, floor_first=True)

Converts a tensor to sliding windows.

Args

x
[N, H, W, C]
k
[KH, KW]
pad
[PH, PW]
stride
[SH, SW]

Returns

y
[N, (H-KH+PH+1)/SH, (W-KW+PW+1)/SW, KH * KW, C]
Expand source code
def extract_sliding_windows(x, ksize, pad, stride, floor_first=True):
    """Converts a tensor to sliding windows.

    Args:
        x: [N, H, W, C]
        k: [KH, KW]
        pad: [PH, PW]
        stride: [SH, SW]

    Returns:
        y: [N, (H-KH+PH+1)/SH, (W-KW+PW+1)/SW, KH * KW, C]
    """
    n = x.shape[0]
    h = x.shape[1]
    w = x.shape[2]
    c = x.shape[3]
    kh = ksize[0]
    kw = ksize[1]
    sh = stride[0]
    sw = stride[1]

    h2 = int(calc_size(h, kh, pad, sh))
    w2 = int(calc_size(w, kw, pad, sw))
    ph = int(calc_pad(pad, h, h2, sh, kh))
    pw = int(calc_pad(pad, w, w2, sw, kw))

    ph0 = int(np.floor(ph / 2))
    ph1 = int(np.ceil(ph / 2))
    pw0 = int(np.floor(pw / 2))
    pw1 = int(np.ceil(pw / 2))

    if floor_first:
        pph = (ph0, ph1)
        ppw = (pw0, pw1)
    else:
        pph = (ph1, ph0)
        ppw = (pw1, pw0)
    x = np.pad(
        x, ((0, 0), pph, ppw, (0, 0)),
        mode='constant',
        constant_values=(0.0,))

    y = np.zeros([n, h2, w2, kh, kw, c])
    for ii in range(h2):
        for jj in range(w2):
            xx = ii * sh
            yy = jj * sw
            y[:, ii, jj, :, :, :] = x[:, xx:xx + kh, yy:yy + kw, :]
    return y
def extract_sliding_windows_gradw(x, ksize, pad, stride, orig_size, floor_first=True)

Extracts dilated windows.

Args

x
[N, H, W, C]
k
[KH, KW]
pad
[PH, PW]
stride
[SH, SW]

Returns

y
[N, H', W', KH, KW, C]
Expand source code
def extract_sliding_windows_gradw(x,
                                  ksize,
                                  pad,
                                  stride,
                                  orig_size,
                                  floor_first=True):
    """Extracts dilated windows.

    Args:
        x: [N, H, W, C]
        k: [KH, KW]
        pad: [PH, PW]
        stride: [SH, SW]

    Returns:
        y: [N, H', W', KH, KW, C]
    """
    n = x.shape[0]
    h = x.shape[1]
    w = x.shape[2]
    c = x.shape[3]
    kh = ksize[0]
    kw = ksize[1]
    sh = stride[0]
    sw = stride[1]

    h2 = orig_size[0]
    w2 = orig_size[1]
    ph = int(calc_pad(pad, h, h2, 1, ((kh - 1) * sh + 1)))
    pw = int(calc_pad(pad, w, w2, 1, ((kw - 1) * sw + 1)))

    ph2 = int(np.ceil(ph / 2))
    ph3 = int(np.floor(ph / 2))
    pw2 = int(np.ceil(pw / 2))
    pw3 = int(np.floor(pw / 2))
    if floor_first:
        pph = (ph3, ph2)
        ppw = (pw3, pw2)
    else:
        pph = (ph2, ph3)
        ppw = (pw2, pw3)
    x = np.pad(
        x, ((0, 0), (ph3, ph2), (pw3, pw2), (0, 0)),
        mode='constant',
        constant_values=(0.0,))
    p2h = (-x.shape[1]) % sh
    p2w = (-x.shape[2]) % sw
    if p2h > 0 or p2w > 0:
        x = np.pad(
            x, ((0, 0), (0, p2h), (0, p2w), (0, 0)),
            mode='constant',
            constant_values=(0.0,))
    x = x.reshape([n, int(x.shape[1] / sh), sh, int(x.shape[2] / sw), sw, c])

    y = np.zeros([n, h2, w2, kh, kw, c])
    for ii in range(h2):
        for jj in range(w2):
            h0 = int(np.floor(ii / sh))
            w0 = int(np.floor(jj / sw))
            y[:, ii, jj, :, :, :] = x[:, h0:h0 + kh, ii % sh, w0:w0 + kw, jj %
                                                                          sw, :]
    return y
def extract_sliding_windows_gradx(x, ksize, pad, stride, orig_size, floor_first=False)

Extracts windows on a dilated image.

Args

x
[N, H', W', C] (usually dy)
k
[KH, KW]
pad
[PH, PW]
stride
[SH, SW]
orig_size
[H, W]

Returns

y
[N, H, W, KH, KW, C]
Expand source code
def extract_sliding_windows_gradx(x,
                                  ksize,
                                  pad,
                                  stride,
                                  orig_size,
                                  floor_first=False):
    """Extracts windows on a dilated image.

    Args:
        x: [N, H', W', C] (usually dy)
        k: [KH, KW]
        pad: [PH, PW]
        stride: [SH, SW]
        orig_size: [H, W]

    Returns:
        y: [N, H, W, KH, KW, C]
    """
    n = x.shape[0]
    h = x.shape[1]
    w = x.shape[2]
    c = x.shape[3]
    kh = ksize[0]
    kw = ksize[1]
    ph = pad[0]
    pw = pad[1]
    sh = stride[0]
    sw = stride[1]
    h2 = orig_size[0]
    w2 = orig_size[1]
    xs = np.zeros([n, x.shape[1], sh, x.shape[2], sw, c])
    xs[:, :, 0, :, 0, :] = x
    xss = xs.shape
    x = xs.reshape([xss[0], xss[1] * xss[2], xss[3] * xss[4], xss[5]])
    x = x[:, :h2, :w2, :]

    ph2 = int(np.ceil(ph / 2))
    ph3 = int(np.floor(ph / 2))
    pw2 = int(np.ceil(pw / 2))
    pw3 = int(np.floor(pw / 2))
    if floor_first:
        pph = (ph3, ph2)
        ppw = (pw3, pw2)
    else:
        pph = (ph2, ph3)
        ppw = (pw2, pw3)
    x = np.pad(
        x, ((0, 0), pph, ppw, (0, 0)),
        mode='constant',
        constant_values=(0.0,))
    y = np.zeros([n, h2, w2, kh, kw, c])

    for ii in range(h2):
        for jj in range(w2):
            y[:, ii, jj, :, :, :] = x[:, ii:ii + kh, jj:jj + kw, :]
    return y