Expand source code
import numpy as np
from matplotlib import pyplot as plt
from ..sklearnmodel import SklearnModel
def plot_tree_mutation_acceptance_rate(model: SklearnModel, ax=None):
if ax is None:
fig, ax = plt.subplots(1, 1)
ax.scatter(np.arange(len(model.acceptance_trace)),[x["Tree"] for x in model.acceptance_trace])
ax.set_title("Tree Mutation Acceptance Rate")
ax.set_xlabel("Iteration")
ax.set_ylabel("Acceptance Rate")
ax.set_ylim((0, 1.1))
return ax
def plot_tree_likelihood(model: SklearnModel, ax=None):
if ax is None:
fig, ax = plt.subplots(1, 1)
ax.scatter(np.arange(len(model.likelihood)), model.likelihood)
ax.set_title("Likelihood")
ax.set_xlabel("Iteration")
ax.set_ylabel("Likelihood")
# ax.set_ylim((0, 1.1))
return ax
def plot_tree_probs(model: SklearnModel, ax=None):
if ax is None:
fig, ax = plt.subplots(1, 1)
ax.scatter(np.arange(len(model.probs)), model.probs)
ax.set_title("Probs")
ax.set_xlabel("Iteration")
ax.set_ylabel("Probs")
# ax.set_ylim((0, 1.1))
return ax
Functions
def plot_tree_likelihood(model: SklearnModel, ax=None)
-
Expand source code
def plot_tree_likelihood(model: SklearnModel, ax=None): if ax is None: fig, ax = plt.subplots(1, 1) ax.scatter(np.arange(len(model.likelihood)), model.likelihood) ax.set_title("Likelihood") ax.set_xlabel("Iteration") ax.set_ylabel("Likelihood") # ax.set_ylim((0, 1.1)) return ax
def plot_tree_mutation_acceptance_rate(model: SklearnModel, ax=None)
-
Expand source code
def plot_tree_mutation_acceptance_rate(model: SklearnModel, ax=None): if ax is None: fig, ax = plt.subplots(1, 1) ax.scatter(np.arange(len(model.acceptance_trace)),[x["Tree"] for x in model.acceptance_trace]) ax.set_title("Tree Mutation Acceptance Rate") ax.set_xlabel("Iteration") ax.set_ylabel("Acceptance Rate") ax.set_ylim((0, 1.1)) return ax
def plot_tree_probs(model: SklearnModel, ax=None)
-
Expand source code
def plot_tree_probs(model: SklearnModel, ax=None): if ax is None: fig, ax = plt.subplots(1, 1) ax.scatter(np.arange(len(model.probs)), model.probs) ax.set_title("Probs") ax.set_xlabel("Iteration") ax.set_ylabel("Probs") # ax.set_ylim((0, 1.1)) return ax