Expand source code
from copy import deepcopy
from functools import partial
import numpy as np
import sklearn
from sklearn.ensemble import AdaBoostClassifier, AdaBoostRegressor
from sklearn.base import BaseEstimator, ClassifierMixin, MetaEstimatorMixin
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import normalize
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.utils.multiclass import check_classification_targets, unique_labels
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
from imodels.rule_set.rule_set import RuleSet
from imodels.rule_set.slipper_util import SlipperBaseEstimator
from imodels.util.arguments import check_fit_arguments
from imodels.util.convert import tree_to_code, tree_to_rules, dict_to_rule
from imodels.util.rule import Rule, get_feature_dict, replace_feature_name
class BoostedRulesClassifier(AdaBoostClassifier):
'''An easy-interpretable classifier optimizing simple logical rules.
Params
------
estimator: object with fit and predict methods
Defaults to DecisionTreeClassifier with AdaBoost.
For SLIPPER, should pass estimator=imodels.SlipperBaseEstimator
'''
def __init__(
self,
estimator=DecisionTreeClassifier(max_depth=1),
*,
n_estimators=15,
learning_rate=1.0,
random_state=None,
):
try: # sklearn version >= 1.2
super().__init__(
estimator=estimator,
n_estimators=n_estimators,
learning_rate=learning_rate,
random_state=random_state,
)
except: # sklearn version < 1.2
super().__init__(
base_estimator=estimator,
n_estimators=n_estimators,
learning_rate=learning_rate,
random_state=random_state,
)
self.estimator = estimator
def fit(self, X, y, feature_names=None, **kwargs):
X, y, feature_names = check_fit_arguments(self, X, y, feature_names)
super().fit(X, y, **kwargs)
self.complexity_ = len(self.estimators_)
class BoostedRulesRegressor(AdaBoostRegressor):
'''An easy-interpretable regressor optimizing simple logical rules.
Params
------
estimator: object with fit and predict methods
Defaults to DecisionTreeRegressor with AdaBoost.
'''
def __init__(
self,
estimator=DecisionTreeRegressor(max_depth=1),
*,
n_estimators=15,
learning_rate=1.0,
random_state=13,
):
try: # sklearn version >= 1.2
super().__init__(
estimator=estimator,
n_estimators=n_estimators,
learning_rate=learning_rate,
random_state=random_state,
)
except: # sklearn version < 1.2
super().__init__(
base_estimator=estimator,
n_estimators=n_estimators,
learning_rate=learning_rate,
random_state=random_state,
)
self.estimator = estimator
def fit(self, X, y, feature_names=None, **kwargs):
X, y, feature_names = check_fit_arguments(self, X, y, feature_names)
super().fit(X, y, **kwargs)
self.complexity_ = len(self.estimators_)
if __name__ == '__main__':
np.random.seed(13)
X, Y = sklearn.datasets.load_breast_cancer(as_frame=True, return_X_y=True)
model = BoostedRulesClassifier(estimator=DecisionTreeClassifier)
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3)
model.fit(X_train, y_train, feature_names=X_train.columns)
y_pred = model.predict(X_test)
acc = model.score(X_test, y_test)
print('acc', acc, 'complexity', model.complexity_)
print(model)
Classes
class BoostedRulesClassifier (estimator=DecisionTreeClassifier(max_depth=1), *, n_estimators=15, learning_rate=1.0, random_state=None)
-
An easy-interpretable classifier optimizing simple logical rules.
Params
estimator: object with fit and predict methods Defaults to DecisionTreeClassifier with AdaBoost. For SLIPPER, should pass estimator=imodels.SlipperBaseEstimator
Expand source code
class BoostedRulesClassifier(AdaBoostClassifier): '''An easy-interpretable classifier optimizing simple logical rules. Params ------ estimator: object with fit and predict methods Defaults to DecisionTreeClassifier with AdaBoost. For SLIPPER, should pass estimator=imodels.SlipperBaseEstimator ''' def __init__( self, estimator=DecisionTreeClassifier(max_depth=1), *, n_estimators=15, learning_rate=1.0, random_state=None, ): try: # sklearn version >= 1.2 super().__init__( estimator=estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state, ) except: # sklearn version < 1.2 super().__init__( base_estimator=estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state, ) self.estimator = estimator def fit(self, X, y, feature_names=None, **kwargs): X, y, feature_names = check_fit_arguments(self, X, y, feature_names) super().fit(X, y, **kwargs) self.complexity_ = len(self.estimators_)
Ancestors
- sklearn.ensemble._weight_boosting.AdaBoostClassifier
- sklearn.utils._metadata_requests._RoutingNotSupportedMixin
- sklearn.base.ClassifierMixin
- sklearn.ensemble._weight_boosting.BaseWeightBoosting
- sklearn.ensemble._base.BaseEnsemble
- sklearn.base.MetaEstimatorMixin
- sklearn.base.BaseEstimator
- sklearn.utils._estimator_html_repr._HTMLDocumentationLinkMixin
- sklearn.utils._metadata_requests._MetadataRequester
Subclasses
Methods
def fit(self, X, y, feature_names=None, **kwargs)
-
Build a boosted classifier/regressor from the training set (X, y).
Parameters
X
:{array-like, sparse matrix}
ofshape (n_samples, n_features)
- The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR.
y
:array-like
ofshape (n_samples,)
- The target values.
sample_weight
:array-like
ofshape (n_samples,)
, default=None
- Sample weights. If None, the sample weights are initialized to 1 / n_samples.
Returns
self
:object
- Fitted estimator.
Expand source code
def fit(self, X, y, feature_names=None, **kwargs): X, y, feature_names = check_fit_arguments(self, X, y, feature_names) super().fit(X, y, **kwargs) self.complexity_ = len(self.estimators_)
def set_fit_request(self: BoostedRulesClassifier, *, feature_names: Union[bool, ForwardRef(None), str] = '$UNCHANGED$') ‑> BoostedRulesClassifier
-
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(see :func:sklearn.set_config
). Please see :ref:User Guide <metadata_routing>
on how the routing mechanism works.The options for each parameter are:
-
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided. -
False
: metadata is not requested and the meta-estimator will not pass it tofit
. -
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it. -
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version: 1.3
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:
~sklearn.pipeline.Pipeline
. Otherwise it has no effect.Parameters
feature_names
:str, True, False,
orNone
, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for
feature_names
parameter infit
.
Returns
self
:object
- The updated object.
Expand source code
def func(*args, **kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)} in {self.name}. " f"Accepted arguments are: {set(self.keys)}" ) # This makes it possible to use the decorated method as an unbound method, # for instance when monkeypatching. # https://github.com/scikit-learn/scikit-learn/issues/28632 if instance is None: _instance = args[0] args = args[1:] else: _instance = instance # Replicating python's behavior when positional args are given other than # `self`, and `self` is only allowed if this method is unbound. if args: raise TypeError( f"set_{self.name}_request() takes 0 positional argument but" f" {len(args)} were given" ) requests = _instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) _instance._metadata_request = requests return _instance
-
def set_score_request(self: BoostedRulesClassifier, *, sample_weight: Union[bool, ForwardRef(None), str] = '$UNCHANGED$') ‑> BoostedRulesClassifier
-
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(see :func:sklearn.set_config
). Please see :ref:User Guide <metadata_routing>
on how the routing mechanism works.The options for each parameter are:
-
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided. -
False
: metadata is not requested and the meta-estimator will not pass it toscore
. -
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it. -
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version: 1.3
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:
~sklearn.pipeline.Pipeline
. Otherwise it has no effect.Parameters
sample_weight
:str, True, False,
orNone
, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for
sample_weight
parameter inscore
.
Returns
self
:object
- The updated object.
Expand source code
def func(*args, **kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)} in {self.name}. " f"Accepted arguments are: {set(self.keys)}" ) # This makes it possible to use the decorated method as an unbound method, # for instance when monkeypatching. # https://github.com/scikit-learn/scikit-learn/issues/28632 if instance is None: _instance = args[0] args = args[1:] else: _instance = instance # Replicating python's behavior when positional args are given other than # `self`, and `self` is only allowed if this method is unbound. if args: raise TypeError( f"set_{self.name}_request() takes 0 positional argument but" f" {len(args)} were given" ) requests = _instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) _instance._metadata_request = requests return _instance
-
class BoostedRulesRegressor (estimator=DecisionTreeRegressor(max_depth=1), *, n_estimators=15, learning_rate=1.0, random_state=13)
-
An easy-interpretable regressor optimizing simple logical rules.
Params
estimator: object with fit and predict methods Defaults to DecisionTreeRegressor with AdaBoost.
Expand source code
class BoostedRulesRegressor(AdaBoostRegressor): '''An easy-interpretable regressor optimizing simple logical rules. Params ------ estimator: object with fit and predict methods Defaults to DecisionTreeRegressor with AdaBoost. ''' def __init__( self, estimator=DecisionTreeRegressor(max_depth=1), *, n_estimators=15, learning_rate=1.0, random_state=13, ): try: # sklearn version >= 1.2 super().__init__( estimator=estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state, ) except: # sklearn version < 1.2 super().__init__( base_estimator=estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state, ) self.estimator = estimator def fit(self, X, y, feature_names=None, **kwargs): X, y, feature_names = check_fit_arguments(self, X, y, feature_names) super().fit(X, y, **kwargs) self.complexity_ = len(self.estimators_)
Ancestors
- sklearn.ensemble._weight_boosting.AdaBoostRegressor
- sklearn.utils._metadata_requests._RoutingNotSupportedMixin
- sklearn.base.RegressorMixin
- sklearn.ensemble._weight_boosting.BaseWeightBoosting
- sklearn.ensemble._base.BaseEnsemble
- sklearn.base.MetaEstimatorMixin
- sklearn.base.BaseEstimator
- sklearn.utils._estimator_html_repr._HTMLDocumentationLinkMixin
- sklearn.utils._metadata_requests._MetadataRequester
Methods
def fit(self, X, y, feature_names=None, **kwargs)
-
Build a boosted classifier/regressor from the training set (X, y).
Parameters
X
:{array-like, sparse matrix}
ofshape (n_samples, n_features)
- The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR.
y
:array-like
ofshape (n_samples,)
- The target values.
sample_weight
:array-like
ofshape (n_samples,)
, default=None
- Sample weights. If None, the sample weights are initialized to 1 / n_samples.
Returns
self
:object
- Fitted estimator.
Expand source code
def fit(self, X, y, feature_names=None, **kwargs): X, y, feature_names = check_fit_arguments(self, X, y, feature_names) super().fit(X, y, **kwargs) self.complexity_ = len(self.estimators_)
def set_fit_request(self: BoostedRulesRegressor, *, feature_names: Union[bool, ForwardRef(None), str] = '$UNCHANGED$') ‑> BoostedRulesRegressor
-
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(see :func:sklearn.set_config
). Please see :ref:User Guide <metadata_routing>
on how the routing mechanism works.The options for each parameter are:
-
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided. -
False
: metadata is not requested and the meta-estimator will not pass it tofit
. -
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it. -
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version: 1.3
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:
~sklearn.pipeline.Pipeline
. Otherwise it has no effect.Parameters
feature_names
:str, True, False,
orNone
, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for
feature_names
parameter infit
.
Returns
self
:object
- The updated object.
Expand source code
def func(*args, **kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)} in {self.name}. " f"Accepted arguments are: {set(self.keys)}" ) # This makes it possible to use the decorated method as an unbound method, # for instance when monkeypatching. # https://github.com/scikit-learn/scikit-learn/issues/28632 if instance is None: _instance = args[0] args = args[1:] else: _instance = instance # Replicating python's behavior when positional args are given other than # `self`, and `self` is only allowed if this method is unbound. if args: raise TypeError( f"set_{self.name}_request() takes 0 positional argument but" f" {len(args)} were given" ) requests = _instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) _instance._metadata_request = requests return _instance
-
def set_score_request(self: BoostedRulesRegressor, *, sample_weight: Union[bool, ForwardRef(None), str] = '$UNCHANGED$') ‑> BoostedRulesRegressor
-
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(see :func:sklearn.set_config
). Please see :ref:User Guide <metadata_routing>
on how the routing mechanism works.The options for each parameter are:
-
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided. -
False
: metadata is not requested and the meta-estimator will not pass it toscore
. -
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it. -
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version: 1.3
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:
~sklearn.pipeline.Pipeline
. Otherwise it has no effect.Parameters
sample_weight
:str, True, False,
orNone
, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for
sample_weight
parameter inscore
.
Returns
self
:object
- The updated object.
Expand source code
def func(*args, **kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)} in {self.name}. " f"Accepted arguments are: {set(self.keys)}" ) # This makes it possible to use the decorated method as an unbound method, # for instance when monkeypatching. # https://github.com/scikit-learn/scikit-learn/issues/28632 if instance is None: _instance = args[0] args = args[1:] else: _instance = instance # Replicating python's behavior when positional args are given other than # `self`, and `self` is only allowed if this method is unbound. if args: raise TypeError( f"set_{self.name}_request() takes 0 positional argument but" f" {len(args)} were given" ) requests = _instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) _instance._metadata_request = requests return _instance
-