Expand source code
from copy import deepcopy
from typing import List
import numpy as np
from sklearn import datasets
from sklearn.base import BaseEstimator
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.tree import DecisionTreeClassifier
from imodels.tree.hierarchical_shrinkage import HSTreeRegressor, HSTreeClassifier
from imodels.util.tree import compute_tree_complexity
class DecisionTreeCCPClassifier(DecisionTreeClassifier):
def __init__(self, estimator_: BaseEstimator, desired_complexity: int = 1, complexity_measure='max_rules', *args,
**kwargs):
self.desired_complexity = desired_complexity
# print('est', estimator_)
self.estimator_ = estimator_
self.complexity_measure = complexity_measure
def _get_alpha(self, X, y, sample_weight=None, *args, **kwargs):
path = self.estimator_.cost_complexity_pruning_path(X, y)
ccp_alphas, impurities = path.ccp_alphas, path.impurities
complexities = {}
low = 0
high = len(ccp_alphas) - 1
cur = 0
while low <= high:
cur = (high + low) // 2
est_params = self.estimator_.get_params()
est_params['ccp_alpha'] = ccp_alphas[cur]
copied_estimator = deepcopy(self.estimator_).set_params(**est_params)
copied_estimator.fit(X, y)
if self._get_complexity(copied_estimator, self.complexity_measure) < self.desired_complexity:
high = cur - 1
elif self._get_complexity(copied_estimator, self.complexity_measure) > self.desired_complexity:
low = cur + 1
else:
break
self.alpha = ccp_alphas[cur]
# for alpha in ccp_alphas:
# est_params = self.estimator_.get_params()
# est_params['ccp_alpha'] = alpha
# copied_estimator = deepcopy(self.estimator_).set_params(**est_params)
# copied_estimator.fit(X, y)
# complexities[alpha] = self._get_complexity(copied_estimator,self.complexity_measure)
# closest_alpha, closest_leaves = min(complexities.items(), key=lambda x: abs(self.desired_complexity - x[1]))
# self.alpha = closest_alpha
def fit(self, X, y, sample_weight=None, *args, **kwargs):
params_for_fitting = self.estimator_.get_params()
self._get_alpha(X, y, sample_weight, *args, **kwargs)
params_for_fitting['ccp_alpha'] = self.alpha
self.estimator_.set_params(**params_for_fitting)
self.estimator_.fit(X, y, *args, **kwargs)
def _get_complexity(self, BaseEstimator, complexity_measure):
return compute_tree_complexity(BaseEstimator.tree_, complexity_measure)
def predict_proba(self, *args, **kwargs):
if hasattr(self.estimator_, 'predict_proba'):
return self.estimator_.predict_proba(*args, **kwargs)
else:
return NotImplemented
def predict(self, X, *args, **kwargs):
return self.estimator_.predict(X, *args, **kwargs)
def score(self, *args, **kwargs):
if hasattr(self.estimator_, 'score'):
return self.estimator_.score(*args, **kwargs)
else:
return NotImplemented
class DecisionTreeCCPRegressor(BaseEstimator):
def __init__(self, estimator_: BaseEstimator, desired_complexity: int = 1, complexity_measure='max_rules', *args,
**kwargs):
self.desired_complexity = desired_complexity
# print('est', estimator_)
self.estimator_ = estimator_
self.alpha = 0.0
self.complexity_measure = complexity_measure
def _get_alpha(self, X, y, sample_weight=None):
path = self.estimator_.cost_complexity_pruning_path(X, y)
ccp_alphas, impurities = path.ccp_alphas, path.impurities
complexities = {}
low = 0
high = len(ccp_alphas) - 1
cur = 0
while low <= high:
cur = (high + low) // 2
est_params = self.estimator_.get_params()
est_params['ccp_alpha'] = ccp_alphas[cur]
copied_estimator = deepcopy(self.estimator_).set_params(**est_params)
copied_estimator.fit(X, y)
if self._get_complexity(copied_estimator, self.complexity_measure) < self.desired_complexity:
high = cur - 1
elif self._get_complexity(copied_estimator, self.complexity_measure) > self.desired_complexity:
low = cur + 1
else:
break
self.alpha = ccp_alphas[cur]
# path = self.estimator_.cost_complexity_pruning_path(X,y)
# ccp_alphas, impurities = path.ccp_alphas, path.impurities
# complexities = {}
# for alpha in ccp_alphas:
# est_params = self.estimator_.get_params()
# est_params['ccp_alpha'] = alpha
# copied_estimator = deepcopy(self.estimator_).set_params(**est_params)
# copied_estimator.fit(X, y)
# complexities[alpha] = self._get_complexity(copied_estimator,self.complexity_measure)
# closest_alpha, closest_leaves = min(complexities.items(), key=lambda x: abs(self.desired_complexity - x[1]))
# self.alpha = closest_alpha
def fit(self, X, y, sample_weight=None):
params_for_fitting = self.estimator_.get_params()
self._get_alpha(X, y, sample_weight)
params_for_fitting['ccp_alpha'] = self.alpha
self.estimator_.set_params(**params_for_fitting)
self.estimator_.fit(X, y)
def _get_complexity(self, BaseEstimator, complexity_measure):
return compute_tree_complexity(BaseEstimator.tree_, self.complexity_measure)
def predict(self, X, *args, **kwargs):
return self.estimator_.predict(X, *args, **kwargs)
def score(self, *args, **kwargs):
if hasattr(self.estimator_, 'score'):
return self.estimator_.score(*args, **kwargs)
else:
return NotImplemented
class HSDecisionTreeCCPRegressorCV(HSTreeRegressor):
def __init__(self, estimator_: BaseEstimator, reg_param_list: List[float] = [0.1, 1, 10, 50, 100, 500],
desired_complexity: int = 1, cv: int = 3, scoring=None, *args, **kwargs):
super().__init__(estimator_=estimator_, reg_param=None)
self.reg_param_list = np.array(reg_param_list)
self.cv = cv
self.scoring = scoring
self.desired_complexity = desired_complexity
def fit(self, X, y, sample_weight=None, *args, **kwargs):
m = DecisionTreeCCPRegressor(self.estimator_, desired_complexity=self.desired_complexity)
m.fit(X, y, sample_weight, *args, **kwargs)
self.scores_ = []
for reg_param in self.reg_param_list:
est = HSTreeRegressor(deepcopy(m.estimator_), reg_param)
cv_scores = cross_val_score(est, X, y, cv=self.cv, scoring=self.scoring)
self.scores_.append(np.mean(cv_scores))
self.reg_param = self.reg_param_list[np.argmax(self.scores_)]
super().fit(X=X, y=y)
class HSDecisionTreeCCPClassifierCV(HSTreeClassifier):
def __init__(self, estimator_: BaseEstimator, reg_param_list: List[float] = [0.1, 1, 10, 50, 100, 500],
desired_complexity: int = 1, cv: int = 3, scoring=None, *args, **kwargs):
super().__init__(estimator_=estimator_, reg_param=None)
self.reg_param_list = np.array(reg_param_list)
self.cv = cv
self.scoring = scoring
self.desired_complexity = desired_complexity
def fit(self, X, y, sample_weight=None, *args, **kwargs):
m = DecisionTreeCCPClassifier(self.estimator_, desired_complexity=self.desired_complexity)
m.fit(X, y, sample_weight, *args, **kwargs)
self.scores_ = []
for reg_param in self.reg_param_list:
est = HSTreeClassifier(deepcopy(m.estimator_), reg_param)
cv_scores = cross_val_score(est, X, y, cv=self.cv, scoring=self.scoring)
self.scores_.append(np.mean(cv_scores))
self.reg_param = self.reg_param_list[np.argmax(self.scores_)]
super().fit(X=X, y=y)
if __name__ == '__main__':
m = DecisionTreeCCPClassifier(estimator_=DecisionTreeClassifier(random_state=1), desired_complexity=10,
complexity_measure='max_leaf_nodes')
# X,y = make_friedman1() #For regression
X, y = datasets.load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.33, random_state=42)
m.fit(X_train, y_train)
m.predict(X_test)
print(m.score(X_test, y_test))
m = HSDecisionTreeCCPClassifierCV(estimator_=DecisionTreeClassifier(random_state=1), desired_complexity=10,
reg_param_list=[0.0, 0.1, 1.0, 5.0, 10.0, 25.0, 50.0, 100.0])
m.fit(X_train, y_train)
print(m.score(X_test, y_test))
Classes
class DecisionTreeCCPClassifier (estimator_: sklearn.base.BaseEstimator, desired_complexity: int = 1, complexity_measure='max_rules', *args, **kwargs)
-
A decision tree classifier.
Read more in the :ref:
User Guide <tree>
.Parameters
criterion
:{"gini", "entropy", "log_loss"}
, default="gini"
- The function to measure the quality of a split. Supported criteria are
"gini" for the Gini impurity and "log_loss" and "entropy" both for the
Shannon information gain, see :ref:
tree_mathematical_formulation
. splitter
:{"best", "random"}
, default="best"
- The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split.
max_depth
:int
, default=None
- The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.
min_samples_split
:int
orfloat
, default=2
-
The minimum number of samples required to split an internal node:
- If int, then consider
min_samples_split
as the minimum number. - If float, then
min_samples_split
is a fraction andceil(min_samples_split * n_samples)
are the minimum number of samples for each split.
Changed in version: 0.18
Added float values for fractions.
- If int, then consider
min_samples_leaf
:int
orfloat
, default=1
-
The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least
min_samples_leaf
training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression.- If int, then consider
min_samples_leaf
as the minimum number. - If float, then
min_samples_leaf
is a fraction andceil(min_samples_leaf * n_samples)
are the minimum number of samples for each node.
Changed in version: 0.18
Added float values for fractions.
- If int, then consider
min_weight_fraction_leaf
:float
, default=0.0
- The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided.
max_features
:int, float
or{"sqrt", "log2"}
, default=None
-
The number of features to consider when looking for the best split:
- If int, then consider <code>max\_features</code> features at each split. - If float, then <code>max\_features</code> is a fraction and `max(1, int(max_features * n_features_in_))` features are considered at each split. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`.
Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than
max_features
features. random_state
:int, RandomState instance
orNone
, default=None
- Controls the randomness of the estimator. The features are always
randomly permuted at each split, even if
splitter
is set to"best"
. Whenmax_features < n_features
, the algorithm will selectmax_features
at random at each split before finding the best split among them. But the best found split may vary across different runs, even ifmax_features=n_features
. That is the case, if the improvement of the criterion is identical for several splits and one split has to be selected at random. To obtain a deterministic behaviour during fitting,random_state
has to be fixed to an integer. See :term:Glossary <random_state>
for details. max_leaf_nodes
:int
, default=None
- Grow a tree with
max_leaf_nodes
in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_decrease
:float
, default=0.0
-
A node will be split if this split induces a decrease of the impurity greater than or equal to this value.
The weighted impurity decrease equation is the following::
N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity)
where
N
is the total number of samples,N_t
is the number of samples at the current node,N_t_L
is the number of samples in the left child, andN_t_R
is the number of samples in the right child.N
,N_t
,N_t_R
andN_t_L
all refer to the weighted sum, ifsample_weight
is passed.Added in version: 0.19
class_weight
:dict, list
ofdict
or"balanced"
, default=None
-
Weights associated with classes in the form
{class_label: weight}
. If None, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y.Note that for multioutput (including multilabel) weights should be defined for each class of every column in its own dict. For example, for four-class multilabel classification weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5}, {3:1}, {4:1}].
The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as
n_samples / (n_classes * np.bincount(y))
For multi-output, the weights of each column of y will be multiplied.
Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified.
ccp_alpha
:non-negative float
, default=0.0
-
Complexity parameter used for Minimal Cost-Complexity Pruning. The subtree with the largest cost complexity that is smaller than
ccp_alpha
will be chosen. By default, no pruning is performed. See :ref:minimal_cost_complexity_pruning
for details.Added in version: 0.22
monotonic_cst
:array-like
ofint
ofshape (n_features)
, default=None
-
Indicates the monotonicity constraint to enforce on each feature. - 1: monotonic increase - 0: no constraint - -1: monotonic decrease
If monotonic_cst is None, no constraints are applied.
Monotonicity constraints are not supported for: - multiclass classifications (i.e. when
n_classes > 2
), - multioutput classifications (i.e. whenn_outputs_ > 1
), - classifications trained on data with missing values.The constraints hold over the probability of the positive class.
Read more in the :ref:
User Guide <monotonic_cst_gbdt>
.Added in version: 1.4
Attributes
classes_
:ndarray
ofshape (n_classes,)
orlist
ofndarray
- The classes labels (single output problem), or a list of arrays of class labels (multi-output problem).
feature_importances_
:ndarray
ofshape (n_features,)
-
The impurity-based feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_.
Warning: impurity-based feature importances can be misleading for high cardinality features (many unique values). See :func:
sklearn.inspection.permutation_importance
as an alternative. max_features_
:int
- The inferred value of max_features.
n_classes_
:int
orlist
ofint
- The number of classes (for single output problems), or a list containing the number of classes for each output (for multi-output problems).
n_features_in_
:int
-
Number of features seen during :term:
fit
.Added in version: 0.24
feature_names_in_
:ndarray
ofshape (
n_features_in_,)
-
Names of features seen during :term:
fit
. Defined only whenX
has feature names that are all strings.Added in version: 1.0
n_outputs_
:int
- The number of outputs when
fit
is performed. tree_
:Tree instance
- The underlying Tree object. Please refer to
help(sklearn.tree._tree.Tree)
for attributes of Tree object and :ref:sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py
for basic usage of these attributes.
See Also
DecisionTreeRegressor
- A decision tree regressor.
Notes
The default values for the parameters controlling the size of the trees (e.g.
max_depth
,min_samples_leaf
, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values.The :meth:
predict
method operates using the :func:numpy.argmax
function on the outputs of :meth:predict_proba
. This means that in case the highest predicted probabilities are tied, the classifier will predict the tied class with the lowest index in :term:classes_
.References
.. [1] https://en.wikipedia.org/wiki/Decision_tree_learning
.. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984.
.. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009.
.. [4] L. Breiman, and A. Cutler, "Random Forests", https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
Examples
>>> from sklearn.datasets import load_iris >>> from sklearn.model_selection import cross_val_score >>> from sklearn.tree import DecisionTreeClassifier >>> clf = DecisionTreeClassifier(random_state=0) >>> iris = load_iris() >>> cross_val_score(clf, iris.data, iris.target, cv=10) ... # doctest: +SKIP ... array([ 1. , 0.93..., 0.86..., 0.93..., 0.93..., 0.93..., 0.93..., 1. , 0.93..., 1. ])
Expand source code
class DecisionTreeCCPClassifier(DecisionTreeClassifier): def __init__(self, estimator_: BaseEstimator, desired_complexity: int = 1, complexity_measure='max_rules', *args, **kwargs): self.desired_complexity = desired_complexity # print('est', estimator_) self.estimator_ = estimator_ self.complexity_measure = complexity_measure def _get_alpha(self, X, y, sample_weight=None, *args, **kwargs): path = self.estimator_.cost_complexity_pruning_path(X, y) ccp_alphas, impurities = path.ccp_alphas, path.impurities complexities = {} low = 0 high = len(ccp_alphas) - 1 cur = 0 while low <= high: cur = (high + low) // 2 est_params = self.estimator_.get_params() est_params['ccp_alpha'] = ccp_alphas[cur] copied_estimator = deepcopy(self.estimator_).set_params(**est_params) copied_estimator.fit(X, y) if self._get_complexity(copied_estimator, self.complexity_measure) < self.desired_complexity: high = cur - 1 elif self._get_complexity(copied_estimator, self.complexity_measure) > self.desired_complexity: low = cur + 1 else: break self.alpha = ccp_alphas[cur] # for alpha in ccp_alphas: # est_params = self.estimator_.get_params() # est_params['ccp_alpha'] = alpha # copied_estimator = deepcopy(self.estimator_).set_params(**est_params) # copied_estimator.fit(X, y) # complexities[alpha] = self._get_complexity(copied_estimator,self.complexity_measure) # closest_alpha, closest_leaves = min(complexities.items(), key=lambda x: abs(self.desired_complexity - x[1])) # self.alpha = closest_alpha def fit(self, X, y, sample_weight=None, *args, **kwargs): params_for_fitting = self.estimator_.get_params() self._get_alpha(X, y, sample_weight, *args, **kwargs) params_for_fitting['ccp_alpha'] = self.alpha self.estimator_.set_params(**params_for_fitting) self.estimator_.fit(X, y, *args, **kwargs) def _get_complexity(self, BaseEstimator, complexity_measure): return compute_tree_complexity(BaseEstimator.tree_, complexity_measure) def predict_proba(self, *args, **kwargs): if hasattr(self.estimator_, 'predict_proba'): return self.estimator_.predict_proba(*args, **kwargs) else: return NotImplemented def predict(self, X, *args, **kwargs): return self.estimator_.predict(X, *args, **kwargs) def score(self, *args, **kwargs): if hasattr(self.estimator_, 'score'): return self.estimator_.score(*args, **kwargs) else: return NotImplemented
Ancestors
- sklearn.tree._classes.DecisionTreeClassifier
- sklearn.base.ClassifierMixin
- sklearn.tree._classes.BaseDecisionTree
- sklearn.base.MultiOutputMixin
- sklearn.base.BaseEstimator
- sklearn.utils._estimator_html_repr._HTMLDocumentationLinkMixin
- sklearn.utils._metadata_requests._MetadataRequester
Methods
def fit(self, X, y, sample_weight=None, *args, **kwargs)
-
Build a decision tree classifier from the training set (X, y).
Parameters
X
:{array-like, sparse matrix}
ofshape (n_samples, n_features)
- The training input samples. Internally, it will be converted to
dtype=np.float32
and if a sparse matrix is provided to a sparsecsc_matrix
. y
:array-like
ofshape (n_samples,)
or(n_samples, n_outputs)
- The target values (class labels) as integers or strings.
sample_weight
:array-like
ofshape (n_samples,)
, default=None
- Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. Splits are also ignored if they would result in any single class carrying a negative weight in either child node.
check_input
:bool
, default=True
- Allow to bypass several input checking. Don't use this parameter unless you know what you're doing.
Returns
self
:DecisionTreeClassifier
- Fitted estimator.
Expand source code
def fit(self, X, y, sample_weight=None, *args, **kwargs): params_for_fitting = self.estimator_.get_params() self._get_alpha(X, y, sample_weight, *args, **kwargs) params_for_fitting['ccp_alpha'] = self.alpha self.estimator_.set_params(**params_for_fitting) self.estimator_.fit(X, y, *args, **kwargs)
def predict(self, X, *args, **kwargs)
-
Predict class or regression value for X.
For a classification model, the predicted class for each sample in X is returned. For a regression model, the predicted value based on X is returned.
Parameters
X
:{array-like, sparse matrix}
ofshape (n_samples, n_features)
- The input samples. Internally, it will be converted to
dtype=np.float32
and if a sparse matrix is provided to a sparsecsr_matrix
. check_input
:bool
, default=True
- Allow to bypass several input checking. Don't use this parameter unless you know what you're doing.
Returns
y
:array-like
ofshape (n_samples,)
or(n_samples, n_outputs)
- The predicted classes, or the predict values.
Expand source code
def predict(self, X, *args, **kwargs): return self.estimator_.predict(X, *args, **kwargs)
def predict_proba(self, *args, **kwargs)
-
Predict class probabilities of the input samples X.
The predicted class probability is the fraction of samples of the same class in a leaf.
Parameters
X
:{array-like, sparse matrix}
ofshape (n_samples, n_features)
- The input samples. Internally, it will be converted to
dtype=np.float32
and if a sparse matrix is provided to a sparsecsr_matrix
. check_input
:bool
, default=True
- Allow to bypass several input checking. Don't use this parameter unless you know what you're doing.
Returns
proba
:ndarray
ofshape (n_samples, n_classes)
orlist
ofn_outputs such arrays if n_outputs > 1
- The class probabilities of the input samples. The order of the
classes corresponds to that in the attribute :term:
classes_
.
Expand source code
def predict_proba(self, *args, **kwargs): if hasattr(self.estimator_, 'predict_proba'): return self.estimator_.predict_proba(*args, **kwargs) else: return NotImplemented
def score(self, *args, **kwargs)
-
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
Parameters
X
:array-like
ofshape (n_samples, n_features)
- Test samples.
y
:array-like
ofshape (n_samples,)
or(n_samples, n_outputs)
- True labels for
X
. sample_weight
:array-like
ofshape (n_samples,)
, default=None
- Sample weights.
Returns
score
:float
- Mean accuracy of
self.predict(X)
w.r.t.y
.
Expand source code
def score(self, *args, **kwargs): if hasattr(self.estimator_, 'score'): return self.estimator_.score(*args, **kwargs) else: return NotImplemented
def set_fit_request(self: DecisionTreeCCPClassifier, *, sample_weight: Union[bool, ForwardRef(None), str] = '$UNCHANGED$') ‑> DecisionTreeCCPClassifier
-
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(see :func:sklearn.set_config
). Please see :ref:User Guide <metadata_routing>
on how the routing mechanism works.The options for each parameter are:
-
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided. -
False
: metadata is not requested and the meta-estimator will not pass it tofit
. -
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it. -
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version: 1.3
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:
~sklearn.pipeline.Pipeline
. Otherwise it has no effect.Parameters
sample_weight
:str, True, False,
orNone
, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for
sample_weight
parameter infit
.
Returns
self
:object
- The updated object.
Expand source code
def func(*args, **kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)} in {self.name}. " f"Accepted arguments are: {set(self.keys)}" ) # This makes it possible to use the decorated method as an unbound method, # for instance when monkeypatching. # https://github.com/scikit-learn/scikit-learn/issues/28632 if instance is None: _instance = args[0] args = args[1:] else: _instance = instance # Replicating python's behavior when positional args are given other than # `self`, and `self` is only allowed if this method is unbound. if args: raise TypeError( f"set_{self.name}_request() takes 0 positional argument but" f" {len(args)} were given" ) requests = _instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) _instance._metadata_request = requests return _instance
-
class DecisionTreeCCPRegressor (estimator_: sklearn.base.BaseEstimator, desired_complexity: int = 1, complexity_measure='max_rules', *args, **kwargs)
-
Base class for all estimators in scikit-learn.
Inheriting from this class provides default implementations of:
- setting and getting parameters used by
GridSearchCV
and friends; - textual and HTML representation displayed in terminals and IDEs;
- estimator serialization;
- parameters validation;
- data validation;
- feature names validation.
Read more in the :ref:
User Guide <rolling_your_own_estimator>
.Notes
All estimators should specify all the parameters that can be set at the class level in their
__init__
as explicit keyword arguments (no*args
or**kwargs
).Examples
>>> import numpy as np >>> from sklearn.base import BaseEstimator >>> class MyEstimator(BaseEstimator): ... def __init__(self, *, param=1): ... self.param = param ... def fit(self, X, y=None): ... self.is_fitted_ = True ... return self ... def predict(self, X): ... return np.full(shape=X.shape[0], fill_value=self.param) >>> estimator = MyEstimator(param=2) >>> estimator.get_params() {'param': 2} >>> X = np.array([[1, 2], [2, 3], [3, 4]]) >>> y = np.array([1, 0, 1]) >>> estimator.fit(X, y).predict(X) array([2, 2, 2]) >>> estimator.set_params(param=3).fit(X, y).predict(X) array([3, 3, 3])
Expand source code
class DecisionTreeCCPRegressor(BaseEstimator): def __init__(self, estimator_: BaseEstimator, desired_complexity: int = 1, complexity_measure='max_rules', *args, **kwargs): self.desired_complexity = desired_complexity # print('est', estimator_) self.estimator_ = estimator_ self.alpha = 0.0 self.complexity_measure = complexity_measure def _get_alpha(self, X, y, sample_weight=None): path = self.estimator_.cost_complexity_pruning_path(X, y) ccp_alphas, impurities = path.ccp_alphas, path.impurities complexities = {} low = 0 high = len(ccp_alphas) - 1 cur = 0 while low <= high: cur = (high + low) // 2 est_params = self.estimator_.get_params() est_params['ccp_alpha'] = ccp_alphas[cur] copied_estimator = deepcopy(self.estimator_).set_params(**est_params) copied_estimator.fit(X, y) if self._get_complexity(copied_estimator, self.complexity_measure) < self.desired_complexity: high = cur - 1 elif self._get_complexity(copied_estimator, self.complexity_measure) > self.desired_complexity: low = cur + 1 else: break self.alpha = ccp_alphas[cur] # path = self.estimator_.cost_complexity_pruning_path(X,y) # ccp_alphas, impurities = path.ccp_alphas, path.impurities # complexities = {} # for alpha in ccp_alphas: # est_params = self.estimator_.get_params() # est_params['ccp_alpha'] = alpha # copied_estimator = deepcopy(self.estimator_).set_params(**est_params) # copied_estimator.fit(X, y) # complexities[alpha] = self._get_complexity(copied_estimator,self.complexity_measure) # closest_alpha, closest_leaves = min(complexities.items(), key=lambda x: abs(self.desired_complexity - x[1])) # self.alpha = closest_alpha def fit(self, X, y, sample_weight=None): params_for_fitting = self.estimator_.get_params() self._get_alpha(X, y, sample_weight) params_for_fitting['ccp_alpha'] = self.alpha self.estimator_.set_params(**params_for_fitting) self.estimator_.fit(X, y) def _get_complexity(self, BaseEstimator, complexity_measure): return compute_tree_complexity(BaseEstimator.tree_, self.complexity_measure) def predict(self, X, *args, **kwargs): return self.estimator_.predict(X, *args, **kwargs) def score(self, *args, **kwargs): if hasattr(self.estimator_, 'score'): return self.estimator_.score(*args, **kwargs) else: return NotImplemented
Ancestors
- sklearn.base.BaseEstimator
- sklearn.utils._estimator_html_repr._HTMLDocumentationLinkMixin
- sklearn.utils._metadata_requests._MetadataRequester
Methods
def fit(self, X, y, sample_weight=None)
-
Expand source code
def fit(self, X, y, sample_weight=None): params_for_fitting = self.estimator_.get_params() self._get_alpha(X, y, sample_weight) params_for_fitting['ccp_alpha'] = self.alpha self.estimator_.set_params(**params_for_fitting) self.estimator_.fit(X, y)
def predict(self, X, *args, **kwargs)
-
Expand source code
def predict(self, X, *args, **kwargs): return self.estimator_.predict(X, *args, **kwargs)
def score(self, *args, **kwargs)
-
Expand source code
def score(self, *args, **kwargs): if hasattr(self.estimator_, 'score'): return self.estimator_.score(*args, **kwargs) else: return NotImplemented
def set_fit_request(self: DecisionTreeCCPRegressor, *, sample_weight: Union[bool, ForwardRef(None), str] = '$UNCHANGED$') ‑> DecisionTreeCCPRegressor
-
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(see :func:sklearn.set_config
). Please see :ref:User Guide <metadata_routing>
on how the routing mechanism works.The options for each parameter are:
-
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided. -
False
: metadata is not requested and the meta-estimator will not pass it tofit
. -
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it. -
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version: 1.3
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:
~sklearn.pipeline.Pipeline
. Otherwise it has no effect.Parameters
sample_weight
:str, True, False,
orNone
, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for
sample_weight
parameter infit
.
Returns
self
:object
- The updated object.
Expand source code
def func(*args, **kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)} in {self.name}. " f"Accepted arguments are: {set(self.keys)}" ) # This makes it possible to use the decorated method as an unbound method, # for instance when monkeypatching. # https://github.com/scikit-learn/scikit-learn/issues/28632 if instance is None: _instance = args[0] args = args[1:] else: _instance = instance # Replicating python's behavior when positional args are given other than # `self`, and `self` is only allowed if this method is unbound. if args: raise TypeError( f"set_{self.name}_request() takes 0 positional argument but" f" {len(args)} were given" ) requests = _instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) _instance._metadata_request = requests return _instance
-
- setting and getting parameters used by
class HSDecisionTreeCCPClassifierCV (estimator_: sklearn.base.BaseEstimator, reg_param_list: List[float] = [0.1, 1, 10, 50, 100, 500], desired_complexity: int = 1, cv: int = 3, scoring=None, *args, **kwargs)
-
Base class for all estimators in scikit-learn.
Inheriting from this class provides default implementations of:
- setting and getting parameters used by
GridSearchCV
and friends; - textual and HTML representation displayed in terminals and IDEs;
- estimator serialization;
- parameters validation;
- data validation;
- feature names validation.
Read more in the :ref:
User Guide <rolling_your_own_estimator>
.Notes
All estimators should specify all the parameters that can be set at the class level in their
__init__
as explicit keyword arguments (no*args
or**kwargs
).Examples
>>> import numpy as np >>> from sklearn.base import BaseEstimator >>> class MyEstimator(BaseEstimator): ... def __init__(self, *, param=1): ... self.param = param ... def fit(self, X, y=None): ... self.is_fitted_ = True ... return self ... def predict(self, X): ... return np.full(shape=X.shape[0], fill_value=self.param) >>> estimator = MyEstimator(param=2) >>> estimator.get_params() {'param': 2} >>> X = np.array([[1, 2], [2, 3], [3, 4]]) >>> y = np.array([1, 0, 1]) >>> estimator.fit(X, y).predict(X) array([2, 2, 2]) >>> estimator.set_params(param=3).fit(X, y).predict(X) array([3, 3, 3])
HSTree (Tree with hierarchical shrinkage applied). Hierarchical shinkage is an extremely fast post-hoc regularization method which works on any decision tree (or tree-based ensemble, such as Random Forest). It does not modify the tree structure, and instead regularizes the tree by shrinking the prediction over each node towards the sample means of its ancestors (using a single regularization parameter). Experiments over a wide variety of datasets show that hierarchical shrinkage substantially increases the predictive performance of individual decision trees and decision-tree ensembles. https://arxiv.org/abs/2202.00858
Params
estimator_: sklearn tree or tree ensemble model (e.g. RandomForest or GradientBoosting) Defaults to CART Classification Tree with 20 max leaf nodes Note: this estimator will be directly modified
reg_param: float Higher is more regularization (can be arbitrarily large, should not be < 0)
shrinkage_scheme: str Experimental: Used to experiment with different forms of shrinkage. options are: (i) node_based shrinks based on number of samples in parent node (ii) leaf_based only shrinks leaf nodes based on number of leaf samples (iii) constant shrinks every node by a constant lambda
max_leaf_nodes: int If estimator is None, then max_leaf_nodes is passed to the default decision tree
Expand source code
class HSDecisionTreeCCPClassifierCV(HSTreeClassifier): def __init__(self, estimator_: BaseEstimator, reg_param_list: List[float] = [0.1, 1, 10, 50, 100, 500], desired_complexity: int = 1, cv: int = 3, scoring=None, *args, **kwargs): super().__init__(estimator_=estimator_, reg_param=None) self.reg_param_list = np.array(reg_param_list) self.cv = cv self.scoring = scoring self.desired_complexity = desired_complexity def fit(self, X, y, sample_weight=None, *args, **kwargs): m = DecisionTreeCCPClassifier(self.estimator_, desired_complexity=self.desired_complexity) m.fit(X, y, sample_weight, *args, **kwargs) self.scores_ = [] for reg_param in self.reg_param_list: est = HSTreeClassifier(deepcopy(m.estimator_), reg_param) cv_scores = cross_val_score(est, X, y, cv=self.cv, scoring=self.scoring) self.scores_.append(np.mean(cv_scores)) self.reg_param = self.reg_param_list[np.argmax(self.scores_)] super().fit(X=X, y=y)
Ancestors
- HSTreeClassifier
- HSTree
- sklearn.base.BaseEstimator
- sklearn.utils._estimator_html_repr._HTMLDocumentationLinkMixin
- sklearn.utils._metadata_requests._MetadataRequester
- sklearn.base.ClassifierMixin
Methods
def fit(self, X, y, sample_weight=None, *args, **kwargs)
-
Expand source code
def fit(self, X, y, sample_weight=None, *args, **kwargs): m = DecisionTreeCCPClassifier(self.estimator_, desired_complexity=self.desired_complexity) m.fit(X, y, sample_weight, *args, **kwargs) self.scores_ = [] for reg_param in self.reg_param_list: est = HSTreeClassifier(deepcopy(m.estimator_), reg_param) cv_scores = cross_val_score(est, X, y, cv=self.cv, scoring=self.scoring) self.scores_.append(np.mean(cv_scores)) self.reg_param = self.reg_param_list[np.argmax(self.scores_)] super().fit(X=X, y=y)
Inherited members
- setting and getting parameters used by
class HSDecisionTreeCCPRegressorCV (estimator_: sklearn.base.BaseEstimator, reg_param_list: List[float] = [0.1, 1, 10, 50, 100, 500], desired_complexity: int = 1, cv: int = 3, scoring=None, *args, **kwargs)
-
Base class for all estimators in scikit-learn.
Inheriting from this class provides default implementations of:
- setting and getting parameters used by
GridSearchCV
and friends; - textual and HTML representation displayed in terminals and IDEs;
- estimator serialization;
- parameters validation;
- data validation;
- feature names validation.
Read more in the :ref:
User Guide <rolling_your_own_estimator>
.Notes
All estimators should specify all the parameters that can be set at the class level in their
__init__
as explicit keyword arguments (no*args
or**kwargs
).Examples
>>> import numpy as np >>> from sklearn.base import BaseEstimator >>> class MyEstimator(BaseEstimator): ... def __init__(self, *, param=1): ... self.param = param ... def fit(self, X, y=None): ... self.is_fitted_ = True ... return self ... def predict(self, X): ... return np.full(shape=X.shape[0], fill_value=self.param) >>> estimator = MyEstimator(param=2) >>> estimator.get_params() {'param': 2} >>> X = np.array([[1, 2], [2, 3], [3, 4]]) >>> y = np.array([1, 0, 1]) >>> estimator.fit(X, y).predict(X) array([2, 2, 2]) >>> estimator.set_params(param=3).fit(X, y).predict(X) array([3, 3, 3])
HSTree (Tree with hierarchical shrinkage applied). Hierarchical shinkage is an extremely fast post-hoc regularization method which works on any decision tree (or tree-based ensemble, such as Random Forest). It does not modify the tree structure, and instead regularizes the tree by shrinking the prediction over each node towards the sample means of its ancestors (using a single regularization parameter). Experiments over a wide variety of datasets show that hierarchical shrinkage substantially increases the predictive performance of individual decision trees and decision-tree ensembles. https://arxiv.org/abs/2202.00858
Params
estimator_: sklearn tree or tree ensemble model (e.g. RandomForest or GradientBoosting) Defaults to CART Classification Tree with 20 max leaf nodes Note: this estimator will be directly modified
reg_param: float Higher is more regularization (can be arbitrarily large, should not be < 0)
shrinkage_scheme: str Experimental: Used to experiment with different forms of shrinkage. options are: (i) node_based shrinks based on number of samples in parent node (ii) leaf_based only shrinks leaf nodes based on number of leaf samples (iii) constant shrinks every node by a constant lambda
max_leaf_nodes: int If estimator is None, then max_leaf_nodes is passed to the default decision tree
Expand source code
class HSDecisionTreeCCPRegressorCV(HSTreeRegressor): def __init__(self, estimator_: BaseEstimator, reg_param_list: List[float] = [0.1, 1, 10, 50, 100, 500], desired_complexity: int = 1, cv: int = 3, scoring=None, *args, **kwargs): super().__init__(estimator_=estimator_, reg_param=None) self.reg_param_list = np.array(reg_param_list) self.cv = cv self.scoring = scoring self.desired_complexity = desired_complexity def fit(self, X, y, sample_weight=None, *args, **kwargs): m = DecisionTreeCCPRegressor(self.estimator_, desired_complexity=self.desired_complexity) m.fit(X, y, sample_weight, *args, **kwargs) self.scores_ = [] for reg_param in self.reg_param_list: est = HSTreeRegressor(deepcopy(m.estimator_), reg_param) cv_scores = cross_val_score(est, X, y, cv=self.cv, scoring=self.scoring) self.scores_.append(np.mean(cv_scores)) self.reg_param = self.reg_param_list[np.argmax(self.scores_)] super().fit(X=X, y=y)
Ancestors
- HSTreeRegressor
- HSTree
- sklearn.base.BaseEstimator
- sklearn.utils._estimator_html_repr._HTMLDocumentationLinkMixin
- sklearn.utils._metadata_requests._MetadataRequester
- sklearn.base.RegressorMixin
Methods
def fit(self, X, y, sample_weight=None, *args, **kwargs)
-
Expand source code
def fit(self, X, y, sample_weight=None, *args, **kwargs): m = DecisionTreeCCPRegressor(self.estimator_, desired_complexity=self.desired_complexity) m.fit(X, y, sample_weight, *args, **kwargs) self.scores_ = [] for reg_param in self.reg_param_list: est = HSTreeRegressor(deepcopy(m.estimator_), reg_param) cv_scores = cross_val_score(est, X, y, cv=self.cv, scoring=self.scoring) self.scores_.append(np.mean(cv_scores)) self.reg_param = self.reg_param_list[np.argmax(self.scores_)] super().fit(X=X, y=y)
Inherited members
- setting and getting parameters used by