Expand source code
import random
from copy import deepcopy
from queue import deque

import numpy as np
from mlxtend.classifier import LogisticRegression
from sklearn import datasets
from sklearn.base import BaseEstimator, RegressorMixin, ClassifierMixin
from sklearn.linear_model import LinearRegression
from sklearn.metrics import get_scorer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_text
from sklearn.utils import check_X_y

from imodels.util.arguments import check_fit_arguments


class TaoTree(BaseEstimator):

    def __init__(self, model_type: str = 'CART',
                 n_iters: int = 20,
                 model_args: dict = {'max_leaf_nodes': 15},
                 randomize_tree=False,
                 update_scoring='accuracy',
                 min_node_samples_tao=3,
                 min_leaf_samples_tao=2,
                 node_model='stump',
                 node_model_args: dict = {},
                 reg_param: float = 1e-3,
                 weight_errors: bool = False,
                 verbose: int = 0,
                 ):
        """TAO: Alternating optimization of decision trees, with application to learning sparse oblique trees (Neurips 2018)
        https://proceedings.neurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-Abstract.html
        Note: this implementation learns single-feature splits rather than oblique trees.

        Currently supports
        - given a CART tree, posthoc improve it with TAO
            - also works with HSTreeCV

        Todo
        - update bottom to top otherwise input points don't get updated
        - update leaf nodes
        - support regression
        - support FIGS
        - support error-weighting
        - support oblique trees
            - support generic models at decision node
            - support pruning (e.g. if weights -> 0, then remove a node)
        - support classifiers in leaves

        Parameters
        ----------

        model_type: str
            'CART' or 'FIGS'

        n_iters
            Number of iterations to run TAO

        model_args
            Arguments to pass to the model

        randomize_tree
            Whether to randomize the tree before each iteration

        min_node_samples_tao: int
            Minimum number of samples in a node to apply tao

        min_leaf_samples_tao: int

        node_model: str
            'stump' or 'linear'

        reg_param
            Regularization parameter for node-wise linear model (if node_model is 'linear')

        verbose: int
            Verbosity level
        """
        super().__init__()
        self.model_type = model_type
        self.n_iters = n_iters
        self.model_args = model_args
        self.randomize_tree = randomize_tree
        self.update_scoring = update_scoring
        self.min_node_samples_tao = min_node_samples_tao
        self.min_leaf_samples_tao = min_leaf_samples_tao
        self.node_model = node_model
        self.node_model_args = node_model_args
        self.reg_param = reg_param
        self.weight_errors = weight_errors
        self.verbose = verbose
        self._init_prediction_task()  # decides between regressor and classifier

    def _init_prediction_task(self):
        """
        TaoRegressor and TaoClassifier override this method
        to alter the prediction task. When using this class directly,
        it is equivalent to SuperCARTRegressor
        """
        self.prediction_task = 'classification'

    def fit(self, X, y=None, feature_names=None, sample_weight=None):
        """
        Params
        ------
        _sample_weight: array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted.
            Splits that would create child nodes with net zero or negative weight
            are ignored while searching for a split in each node.
        """
        X, y, feature_names = check_fit_arguments(self, X, y, feature_names)
        if isinstance(self, RegressorMixin):
            raise Warning('TAO Regression is not yet tested')
        X, y = check_X_y(X, y)
        y = y.astype(float)
        if feature_names is not None:
            self.feature_names_ = feature_names
        if self.model_type == 'CART':
            if isinstance(self, ClassifierMixin):
                self.model = DecisionTreeClassifier(**self.model_args)
            elif isinstance(self, RegressorMixin):
                self.model = DecisionTreeRegressor(**self.model_args)
            self.model.fit(X, y, sample_weight=sample_weight)
            if self.verbose:
                print(export_text(self.model))
            # plot_tree(self.model)
            # plt.savefig('/Users/chandan/Desktop/tree.png', dpi=300)
            # plt.show()

        if self.randomize_tree:
            np.random.shuffle(self.model.tree_.feature)  # shuffle CART features
            # np.random.shuffle(self.model.tree_.threshold)
            for i in range(self.model.tree_.node_count):  # split on feature medians
                self.model.tree_.threshold[i] = np.median(
                    X[:, self.model.tree_.feature[i]])
        if self.verbose:
            print('starting score', self.model.score(X, y))
        for i in range(self.n_iters):
            num_updates = self._tao_iter_cart(X, y, self.model.tree_, sample_weight=sample_weight)
            if num_updates == 0:
                break

        return self

    def _tao_iter_cart(self, X, y, tree, X_score=None, y_score=None, sample_weight=None):
        """Updates tree by applying the tao algorithm to the tree
        Params
        ------
        X: array-like of shape (n_samples, n_features)
            The input samples.
        y: array-like of shape (n_samples,)
            The target values.
        model: DecisionTreeClassifier.tree_ or DecisionTreeRegressor.tree_
            The model to be post-hoc improved
        """

        # Tree properties
        children_left = tree.children_left
        children_right = tree.children_right
        feature = tree.feature
        threshold = tree.threshold
        value = tree.value

        # For each node, store the path to that node #######################################################
        indexes_with_prefix_paths = []  # data structure with (index, path_to_node_index)
        # e.g. if if node 3 is the left child of node 1 which is the right child of node 0
        # then we get (3, [(0, R), (1, L)])

        # start with the root node id (0) and its depth (0)
        queue = deque()
        queue.append((0, []))
        while len(queue) > 0:
            node_id, path_to_node_index = queue.popleft()
            indexes_with_prefix_paths.append((node_id, path_to_node_index))

            # If a split node, append left and right children and depth to queue
            if children_left[node_id] != children_right[node_id]:
                queue.append((children_left[node_id], path_to_node_index + [(node_id, 'L')]))
                queue.append((children_right[node_id], path_to_node_index + [(node_id, 'R')]))
        # print(indexes_with_prefix_paths)

        num_updates = 0

        # Reversing BFS queue presents nodes bottom -> top one level at a time
        for (node_id, path_to_node_index) in reversed(indexes_with_prefix_paths):
            # For each each node, try a TAO update
            # print('node_id', node_id, path_to_node_index)

            # Compute the points being input to the node ######################################
            def filter_points_by_path(X, y, path_to_node_index):
                """Returns the points in X that are in the path to the node"""
                for node_id, direction in path_to_node_index:
                    idxs = X[:, feature[node_id]] <= threshold[node_id]
                    if direction == 'R':
                        idxs = ~idxs
                    # print('idxs', idxs.size, idxs.sum())
                    X = X[idxs]
                    y = y[idxs]
                return X, y

            X_node, y_node = filter_points_by_path(X, y, path_to_node_index)

            if sample_weight is not None:
                sample_weight_node = filter_points_by_path(X, sample_weight, path_to_node_index)[1]
            else:
                sample_weight_node = np.ones(y_node.size)

            # Skip over leaf nodes and nodes with too few samples ######################################
            if children_left[node_id] == children_right[node_id]:  # is leaf node
                if isinstance(self, RegressorMixin) and X_node.shape[0] >= self.min_leaf_samples_tao:
                    # old_score = self.model.score(X, y)
                    value[node_id] = np.mean(y_node)
                    """
                    new_score = self.model.score(X, y)
                    if new_score > old_score:
                        print(f'\tLeaf improved score from {old_score:0.3f} to {new_score:0.3f}')
                    if new_score < old_score:
                        print(f'\tLeaf reduced score from {old_score:0.3f} to {new_score:0.3f}')
                        # raise ValueError('Leaf update reduced score')
                    """
                # print('\tshapes', X_node.shape, y_node.shape)
                # print('\tvals:', value[node_id][0][0], np.mean(y_node))
                # assert value[node_id][0][0] == np.mean(y_node), 'unless tree changed, vals should be leaf means'
                continue
            elif X_node.shape[0] < self.min_node_samples_tao:
                continue

            # Compute the outputs for these points if they go left or right ######################################
            def predict_from_node(X, node_id):
                """Returns predictions for X starting at node node_id"""

                def predict_from_node(x, node_id):
                    """Returns predictions for x starting at node node_id"""
                    if children_left[node_id] == children_right[node_id]:
                        if isinstance(self, RegressorMixin):
                            return value[node_id]
                        if isinstance(self, ClassifierMixin):
                            return np.argmax(value[node_id])  # note value stores counts for each class
                    if x[feature[node_id]] <= threshold[node_id]:
                        return predict_from_node(x, children_left[node_id])
                    else:
                        return predict_from_node(x, children_right[node_id])

                preds = np.zeros(X.shape[0])
                for i in range(X.shape[0]):
                    preds[i] = predict_from_node(X[i], node_id)
                return preds

            y_node_left = predict_from_node(X_node, children_left[node_id])
            y_node_right = predict_from_node(X_node, children_right[node_id])
            if node_id == 0:  # root node
                assert np.all(np.logical_or(self.model.predict(X_node) == y_node_left,
                                            self.model.predict(
                                                X_node) == y_node_right)), \
                    'actual predictions should match either predict_from_node left or right'

            # Decide on prediction target (want to go left (0) / right (1) when advantageous)
            # TAO paper binarizes these (e.g. predict 0 or 1 depending on which of these is better)
            y_node_absolute_errors = np.abs(np.vstack((y_node - y_node_left,
                                                       y_node - y_node_right))).T

            # screen out indexes where going left/right has no effect
            idxs_relevant = y_node_absolute_errors[:, 0] != y_node_absolute_errors[:, 1]
            if idxs_relevant.sum() <= 1:  # nothing to change
                if self.verbose:
                    print('no errors to change')
                continue
            # assert np.all((self.model.predict(X) != y)[idxs_relevant]), 'relevant indexes should be errors'
            y_node_target = np.argmin(y_node_absolute_errors, axis=1)
            y_node_target = y_node_target[idxs_relevant]

            # here, we optionally weight these errors by the size of the error
            # if we want this to work for classification, must switch to predict_proba
            # if self.prediction_task == 'regression':
            # weight by the difference in error ###############################################################
            if self.weight_errors:
                sample_weight_node *= np.abs(y_node_absolute_errors[:, 1] - y_node_absolute_errors[:, 0])
            sample_weight_node_target = sample_weight_node[idxs_relevant]
            X_node = X_node[idxs_relevant]

            # Fit a 1-variable binary classification model on these outputs ######################################
            # Note: this could be customized (e.g. for sparse oblique trees)
            best_score = -np.inf
            best_feat_num = None
            for feat_num in range(X.shape[1]):
                if isinstance(self, ClassifierMixin):
                    if self.node_model == 'linear':
                        m = LogisticRegression(**self.node_model_args)
                    elif self.node_model == 'stump':
                        m = DecisionTreeClassifier(max_depth=1, **self.node_model_args)
                if isinstance(self, RegressorMixin):
                    if self.node_model == 'linear':
                        m = LinearRegression(**self.node_model_args)
                    elif self.node_model == 'stump':
                        m = DecisionTreeRegressor(max_depth=1, **self.node_model_args)
                X_node_single_feat = X_node[:, feat_num: feat_num + 1]
                m.fit(X_node_single_feat, y_node_target, sample_weight=sample_weight_node_target)
                score = m.score(X_node_single_feat, y_node_target, sample_weight=sample_weight_node_target)
                if score > best_score:
                    best_score = score
                    best_feat_num = feat_num
                    best_model = deepcopy(m)
                    if self.node_model == 'linear':
                        best_threshold = -best_model.intercept_ / best_model.coef_[0]
                    elif self.node_model == 'stump':
                        best_threshold = best_model.tree_.threshold[0]
            # print((feature[node_id], threshold[node_id]), '\n->',
            #       (best_feat_num, best_threshold))

            # Update the node with the new feature / threshold ######################################
            old_feat_num = feature[node_id]
            old_threshold = threshold[node_id]
            # print(X.sum(), y.sum())

            if X_score is None:
                X_score = X
            if y_score is None:
                y_score = y

            scorer = get_scorer(self.update_scoring)

            old_score = scorer(self.model, X_score, y_score)

            feature[node_id] = best_feat_num
            threshold[node_id] = best_threshold
            new_score = scorer(self.model, X_score, y_score)

            # debugging
            if self.verbose > 1:
                if old_score == new_score:
                    print('\tno change', best_feat_num, old_feat_num)
                print(f'\tscore_total {old_score:0.4f} -> {new_score:0.4f}')
            if old_score >= new_score:
                feature[node_id] = old_feat_num
                threshold[node_id] = old_threshold
            else:
                # (Track if any updates were necessary)
                num_updates += 1
                if self.verbose > 0:
                    print(f'Improved score from {old_score:0.4f} to {new_score:0.4f}')

            # debugging snippet (if score_m_new > score_m_old, then new_score should be > old_score, but it isn't!!!!)
            if self.verbose > 1:
                """
                X_node_single_feat = X_node[:, best_feat_num: best_feat_num + 1]
                score_m_new = best_model.score(X_node_single_feat, y_node_target, sample_weight=sample_weight)
                best_model.tree_.feature[0] = old_feat_num
                best_model.tree_.threshold[0] = old_threshold
                X_node_single_feat = X_node[:, old_feat_num: old_feat_num + 1]
                score_m_old = best_model.score(X_node_single_feat, y_node_target, sample_weight=sample_weight)
                print('\t\t', f'score_local {score_m_old:0.4f} -> {score_m_new:0.4f}')
                """

        return num_updates

    def predict(self, X):
        return self.model.predict(X)

    def predict_proba(self, X):
        return self.model.predict_proba(X)

    def score(self, X, y):
        return self.model.score(X, y)


class TaoTreeRegressor(TaoTree, RegressorMixin):
    pass

class TaoTreeClassifier(TaoTree, ClassifierMixin):
    pass

if __name__ == '__main__':
    np.random.seed(13)
    random.seed(13)
    X, y = datasets.load_breast_cancer(return_X_y=True)
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.33, random_state=42
    )
    print('X.shape', X.shape)
    print('ys', np.unique(y_train), '\n\n')
    m = TaoTreeClassifier(randomize_tree=False, weight_errors=False,
                          node_model='stump', model_args={'max_depth': 3},
                          verbose=1)
    m.fit(X_train, y_train)
    print('Train acc', np.mean(m.predict(X_train) == y_train))
    print('Test acc', np.mean(m.predict(X_test) == y_test))
    # print(m.predict(X_train), m.predict_proba(X_train).shape)
    # print(m.predict_proba(X_train))

    # X, y = datasets.load_diabetes(return_X_y=True)  # regression
    # X = np.random.randn(500, 10)
    # y = (X[:, 0] > 0).astype(float) + (X[:, 1] > 1).astype(float)
    # X_train, X_test, y_train, y_test = train_test_split(
    #     X, y, test_size=0.33, random_state=42
    # )
    # m = TaoRegressor()
    # m.fit(X_train, y_train)
    # print('mse', np.mean(np.square(m.predict(X_test) - y_test)),
    #       'baseline', np.mean(np.square(y_test)))

Classes

class TaoTree (model_type: str = 'CART', n_iters: int = 20, model_args: dict = {'max_leaf_nodes': 15}, randomize_tree=False, update_scoring='accuracy', min_node_samples_tao=3, min_leaf_samples_tao=2, node_model='stump', node_model_args: dict = {}, reg_param: float = 0.001, weight_errors: bool = False, verbose: int = 0)

Base class for all estimators in scikit-learn.

Inheriting from this class provides default implementations of:

  • setting and getting parameters used by GridSearchCV and friends;
  • textual and HTML representation displayed in terminals and IDEs;
  • estimator serialization;
  • parameters validation;
  • data validation;
  • feature names validation.

Read more in the :ref:User Guide <rolling_your_own_estimator>.

Notes

All estimators should specify all the parameters that can be set at the class level in their __init__ as explicit keyword arguments (no *args or **kwargs).

Examples

>>> import numpy as np
>>> from sklearn.base import BaseEstimator
>>> class MyEstimator(BaseEstimator):
...     def __init__(self, *, param=1):
...         self.param = param
...     def fit(self, X, y=None):
...         self.is_fitted_ = True
...         return self
...     def predict(self, X):
...         return np.full(shape=X.shape[0], fill_value=self.param)
>>> estimator = MyEstimator(param=2)
>>> estimator.get_params()
{'param': 2}
>>> X = np.array([[1, 2], [2, 3], [3, 4]])
>>> y = np.array([1, 0, 1])
>>> estimator.fit(X, y).predict(X)
array([2, 2, 2])
>>> estimator.set_params(param=3).fit(X, y).predict(X)
array([3, 3, 3])

TAO: Alternating optimization of decision trees, with application to learning sparse oblique trees (Neurips 2018) https://proceedings.neurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-Abstract.html Note: this implementation learns single-feature splits rather than oblique trees.

Currently supports - given a CART tree, posthoc improve it with TAO - also works with HSTreeCV

Todo - update bottom to top otherwise input points don't get updated - update leaf nodes - support regression - support FIGS - support error-weighting - support oblique trees - support generic models at decision node - support pruning (e.g. if weights -> 0, then remove a node) - support classifiers in leaves

Parameters

model_type : str
'CART' or 'FIGS'
n_iters
Number of iterations to run TAO
model_args
Arguments to pass to the model
randomize_tree
Whether to randomize the tree before each iteration
min_node_samples_tao : int
Minimum number of samples in a node to apply tao
min_leaf_samples_tao : int
 
node_model : str
'stump' or 'linear'
reg_param
Regularization parameter for node-wise linear model (if node_model is 'linear')
verbose : int
Verbosity level
Expand source code
class TaoTree(BaseEstimator):

    def __init__(self, model_type: str = 'CART',
                 n_iters: int = 20,
                 model_args: dict = {'max_leaf_nodes': 15},
                 randomize_tree=False,
                 update_scoring='accuracy',
                 min_node_samples_tao=3,
                 min_leaf_samples_tao=2,
                 node_model='stump',
                 node_model_args: dict = {},
                 reg_param: float = 1e-3,
                 weight_errors: bool = False,
                 verbose: int = 0,
                 ):
        """TAO: Alternating optimization of decision trees, with application to learning sparse oblique trees (Neurips 2018)
        https://proceedings.neurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-Abstract.html
        Note: this implementation learns single-feature splits rather than oblique trees.

        Currently supports
        - given a CART tree, posthoc improve it with TAO
            - also works with HSTreeCV

        Todo
        - update bottom to top otherwise input points don't get updated
        - update leaf nodes
        - support regression
        - support FIGS
        - support error-weighting
        - support oblique trees
            - support generic models at decision node
            - support pruning (e.g. if weights -> 0, then remove a node)
        - support classifiers in leaves

        Parameters
        ----------

        model_type: str
            'CART' or 'FIGS'

        n_iters
            Number of iterations to run TAO

        model_args
            Arguments to pass to the model

        randomize_tree
            Whether to randomize the tree before each iteration

        min_node_samples_tao: int
            Minimum number of samples in a node to apply tao

        min_leaf_samples_tao: int

        node_model: str
            'stump' or 'linear'

        reg_param
            Regularization parameter for node-wise linear model (if node_model is 'linear')

        verbose: int
            Verbosity level
        """
        super().__init__()
        self.model_type = model_type
        self.n_iters = n_iters
        self.model_args = model_args
        self.randomize_tree = randomize_tree
        self.update_scoring = update_scoring
        self.min_node_samples_tao = min_node_samples_tao
        self.min_leaf_samples_tao = min_leaf_samples_tao
        self.node_model = node_model
        self.node_model_args = node_model_args
        self.reg_param = reg_param
        self.weight_errors = weight_errors
        self.verbose = verbose
        self._init_prediction_task()  # decides between regressor and classifier

    def _init_prediction_task(self):
        """
        TaoRegressor and TaoClassifier override this method
        to alter the prediction task. When using this class directly,
        it is equivalent to SuperCARTRegressor
        """
        self.prediction_task = 'classification'

    def fit(self, X, y=None, feature_names=None, sample_weight=None):
        """
        Params
        ------
        _sample_weight: array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted.
            Splits that would create child nodes with net zero or negative weight
            are ignored while searching for a split in each node.
        """
        X, y, feature_names = check_fit_arguments(self, X, y, feature_names)
        if isinstance(self, RegressorMixin):
            raise Warning('TAO Regression is not yet tested')
        X, y = check_X_y(X, y)
        y = y.astype(float)
        if feature_names is not None:
            self.feature_names_ = feature_names
        if self.model_type == 'CART':
            if isinstance(self, ClassifierMixin):
                self.model = DecisionTreeClassifier(**self.model_args)
            elif isinstance(self, RegressorMixin):
                self.model = DecisionTreeRegressor(**self.model_args)
            self.model.fit(X, y, sample_weight=sample_weight)
            if self.verbose:
                print(export_text(self.model))
            # plot_tree(self.model)
            # plt.savefig('/Users/chandan/Desktop/tree.png', dpi=300)
            # plt.show()

        if self.randomize_tree:
            np.random.shuffle(self.model.tree_.feature)  # shuffle CART features
            # np.random.shuffle(self.model.tree_.threshold)
            for i in range(self.model.tree_.node_count):  # split on feature medians
                self.model.tree_.threshold[i] = np.median(
                    X[:, self.model.tree_.feature[i]])
        if self.verbose:
            print('starting score', self.model.score(X, y))
        for i in range(self.n_iters):
            num_updates = self._tao_iter_cart(X, y, self.model.tree_, sample_weight=sample_weight)
            if num_updates == 0:
                break

        return self

    def _tao_iter_cart(self, X, y, tree, X_score=None, y_score=None, sample_weight=None):
        """Updates tree by applying the tao algorithm to the tree
        Params
        ------
        X: array-like of shape (n_samples, n_features)
            The input samples.
        y: array-like of shape (n_samples,)
            The target values.
        model: DecisionTreeClassifier.tree_ or DecisionTreeRegressor.tree_
            The model to be post-hoc improved
        """

        # Tree properties
        children_left = tree.children_left
        children_right = tree.children_right
        feature = tree.feature
        threshold = tree.threshold
        value = tree.value

        # For each node, store the path to that node #######################################################
        indexes_with_prefix_paths = []  # data structure with (index, path_to_node_index)
        # e.g. if if node 3 is the left child of node 1 which is the right child of node 0
        # then we get (3, [(0, R), (1, L)])

        # start with the root node id (0) and its depth (0)
        queue = deque()
        queue.append((0, []))
        while len(queue) > 0:
            node_id, path_to_node_index = queue.popleft()
            indexes_with_prefix_paths.append((node_id, path_to_node_index))

            # If a split node, append left and right children and depth to queue
            if children_left[node_id] != children_right[node_id]:
                queue.append((children_left[node_id], path_to_node_index + [(node_id, 'L')]))
                queue.append((children_right[node_id], path_to_node_index + [(node_id, 'R')]))
        # print(indexes_with_prefix_paths)

        num_updates = 0

        # Reversing BFS queue presents nodes bottom -> top one level at a time
        for (node_id, path_to_node_index) in reversed(indexes_with_prefix_paths):
            # For each each node, try a TAO update
            # print('node_id', node_id, path_to_node_index)

            # Compute the points being input to the node ######################################
            def filter_points_by_path(X, y, path_to_node_index):
                """Returns the points in X that are in the path to the node"""
                for node_id, direction in path_to_node_index:
                    idxs = X[:, feature[node_id]] <= threshold[node_id]
                    if direction == 'R':
                        idxs = ~idxs
                    # print('idxs', idxs.size, idxs.sum())
                    X = X[idxs]
                    y = y[idxs]
                return X, y

            X_node, y_node = filter_points_by_path(X, y, path_to_node_index)

            if sample_weight is not None:
                sample_weight_node = filter_points_by_path(X, sample_weight, path_to_node_index)[1]
            else:
                sample_weight_node = np.ones(y_node.size)

            # Skip over leaf nodes and nodes with too few samples ######################################
            if children_left[node_id] == children_right[node_id]:  # is leaf node
                if isinstance(self, RegressorMixin) and X_node.shape[0] >= self.min_leaf_samples_tao:
                    # old_score = self.model.score(X, y)
                    value[node_id] = np.mean(y_node)
                    """
                    new_score = self.model.score(X, y)
                    if new_score > old_score:
                        print(f'\tLeaf improved score from {old_score:0.3f} to {new_score:0.3f}')
                    if new_score < old_score:
                        print(f'\tLeaf reduced score from {old_score:0.3f} to {new_score:0.3f}')
                        # raise ValueError('Leaf update reduced score')
                    """
                # print('\tshapes', X_node.shape, y_node.shape)
                # print('\tvals:', value[node_id][0][0], np.mean(y_node))
                # assert value[node_id][0][0] == np.mean(y_node), 'unless tree changed, vals should be leaf means'
                continue
            elif X_node.shape[0] < self.min_node_samples_tao:
                continue

            # Compute the outputs for these points if they go left or right ######################################
            def predict_from_node(X, node_id):
                """Returns predictions for X starting at node node_id"""

                def predict_from_node(x, node_id):
                    """Returns predictions for x starting at node node_id"""
                    if children_left[node_id] == children_right[node_id]:
                        if isinstance(self, RegressorMixin):
                            return value[node_id]
                        if isinstance(self, ClassifierMixin):
                            return np.argmax(value[node_id])  # note value stores counts for each class
                    if x[feature[node_id]] <= threshold[node_id]:
                        return predict_from_node(x, children_left[node_id])
                    else:
                        return predict_from_node(x, children_right[node_id])

                preds = np.zeros(X.shape[0])
                for i in range(X.shape[0]):
                    preds[i] = predict_from_node(X[i], node_id)
                return preds

            y_node_left = predict_from_node(X_node, children_left[node_id])
            y_node_right = predict_from_node(X_node, children_right[node_id])
            if node_id == 0:  # root node
                assert np.all(np.logical_or(self.model.predict(X_node) == y_node_left,
                                            self.model.predict(
                                                X_node) == y_node_right)), \
                    'actual predictions should match either predict_from_node left or right'

            # Decide on prediction target (want to go left (0) / right (1) when advantageous)
            # TAO paper binarizes these (e.g. predict 0 or 1 depending on which of these is better)
            y_node_absolute_errors = np.abs(np.vstack((y_node - y_node_left,
                                                       y_node - y_node_right))).T

            # screen out indexes where going left/right has no effect
            idxs_relevant = y_node_absolute_errors[:, 0] != y_node_absolute_errors[:, 1]
            if idxs_relevant.sum() <= 1:  # nothing to change
                if self.verbose:
                    print('no errors to change')
                continue
            # assert np.all((self.model.predict(X) != y)[idxs_relevant]), 'relevant indexes should be errors'
            y_node_target = np.argmin(y_node_absolute_errors, axis=1)
            y_node_target = y_node_target[idxs_relevant]

            # here, we optionally weight these errors by the size of the error
            # if we want this to work for classification, must switch to predict_proba
            # if self.prediction_task == 'regression':
            # weight by the difference in error ###############################################################
            if self.weight_errors:
                sample_weight_node *= np.abs(y_node_absolute_errors[:, 1] - y_node_absolute_errors[:, 0])
            sample_weight_node_target = sample_weight_node[idxs_relevant]
            X_node = X_node[idxs_relevant]

            # Fit a 1-variable binary classification model on these outputs ######################################
            # Note: this could be customized (e.g. for sparse oblique trees)
            best_score = -np.inf
            best_feat_num = None
            for feat_num in range(X.shape[1]):
                if isinstance(self, ClassifierMixin):
                    if self.node_model == 'linear':
                        m = LogisticRegression(**self.node_model_args)
                    elif self.node_model == 'stump':
                        m = DecisionTreeClassifier(max_depth=1, **self.node_model_args)
                if isinstance(self, RegressorMixin):
                    if self.node_model == 'linear':
                        m = LinearRegression(**self.node_model_args)
                    elif self.node_model == 'stump':
                        m = DecisionTreeRegressor(max_depth=1, **self.node_model_args)
                X_node_single_feat = X_node[:, feat_num: feat_num + 1]
                m.fit(X_node_single_feat, y_node_target, sample_weight=sample_weight_node_target)
                score = m.score(X_node_single_feat, y_node_target, sample_weight=sample_weight_node_target)
                if score > best_score:
                    best_score = score
                    best_feat_num = feat_num
                    best_model = deepcopy(m)
                    if self.node_model == 'linear':
                        best_threshold = -best_model.intercept_ / best_model.coef_[0]
                    elif self.node_model == 'stump':
                        best_threshold = best_model.tree_.threshold[0]
            # print((feature[node_id], threshold[node_id]), '\n->',
            #       (best_feat_num, best_threshold))

            # Update the node with the new feature / threshold ######################################
            old_feat_num = feature[node_id]
            old_threshold = threshold[node_id]
            # print(X.sum(), y.sum())

            if X_score is None:
                X_score = X
            if y_score is None:
                y_score = y

            scorer = get_scorer(self.update_scoring)

            old_score = scorer(self.model, X_score, y_score)

            feature[node_id] = best_feat_num
            threshold[node_id] = best_threshold
            new_score = scorer(self.model, X_score, y_score)

            # debugging
            if self.verbose > 1:
                if old_score == new_score:
                    print('\tno change', best_feat_num, old_feat_num)
                print(f'\tscore_total {old_score:0.4f} -> {new_score:0.4f}')
            if old_score >= new_score:
                feature[node_id] = old_feat_num
                threshold[node_id] = old_threshold
            else:
                # (Track if any updates were necessary)
                num_updates += 1
                if self.verbose > 0:
                    print(f'Improved score from {old_score:0.4f} to {new_score:0.4f}')

            # debugging snippet (if score_m_new > score_m_old, then new_score should be > old_score, but it isn't!!!!)
            if self.verbose > 1:
                """
                X_node_single_feat = X_node[:, best_feat_num: best_feat_num + 1]
                score_m_new = best_model.score(X_node_single_feat, y_node_target, sample_weight=sample_weight)
                best_model.tree_.feature[0] = old_feat_num
                best_model.tree_.threshold[0] = old_threshold
                X_node_single_feat = X_node[:, old_feat_num: old_feat_num + 1]
                score_m_old = best_model.score(X_node_single_feat, y_node_target, sample_weight=sample_weight)
                print('\t\t', f'score_local {score_m_old:0.4f} -> {score_m_new:0.4f}')
                """

        return num_updates

    def predict(self, X):
        return self.model.predict(X)

    def predict_proba(self, X):
        return self.model.predict_proba(X)

    def score(self, X, y):
        return self.model.score(X, y)

Ancestors

  • sklearn.base.BaseEstimator
  • sklearn.utils._estimator_html_repr._HTMLDocumentationLinkMixin
  • sklearn.utils._metadata_requests._MetadataRequester

Subclasses

Methods

def fit(self, X, y=None, feature_names=None, sample_weight=None)

Params

_sample_weight: array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node.

Expand source code
def fit(self, X, y=None, feature_names=None, sample_weight=None):
    """
    Params
    ------
    _sample_weight: array-like of shape (n_samples,), default=None
        Sample weights. If None, then samples are equally weighted.
        Splits that would create child nodes with net zero or negative weight
        are ignored while searching for a split in each node.
    """
    X, y, feature_names = check_fit_arguments(self, X, y, feature_names)
    if isinstance(self, RegressorMixin):
        raise Warning('TAO Regression is not yet tested')
    X, y = check_X_y(X, y)
    y = y.astype(float)
    if feature_names is not None:
        self.feature_names_ = feature_names
    if self.model_type == 'CART':
        if isinstance(self, ClassifierMixin):
            self.model = DecisionTreeClassifier(**self.model_args)
        elif isinstance(self, RegressorMixin):
            self.model = DecisionTreeRegressor(**self.model_args)
        self.model.fit(X, y, sample_weight=sample_weight)
        if self.verbose:
            print(export_text(self.model))
        # plot_tree(self.model)
        # plt.savefig('/Users/chandan/Desktop/tree.png', dpi=300)
        # plt.show()

    if self.randomize_tree:
        np.random.shuffle(self.model.tree_.feature)  # shuffle CART features
        # np.random.shuffle(self.model.tree_.threshold)
        for i in range(self.model.tree_.node_count):  # split on feature medians
            self.model.tree_.threshold[i] = np.median(
                X[:, self.model.tree_.feature[i]])
    if self.verbose:
        print('starting score', self.model.score(X, y))
    for i in range(self.n_iters):
        num_updates = self._tao_iter_cart(X, y, self.model.tree_, sample_weight=sample_weight)
        if num_updates == 0:
            break

    return self
def predict(self, X)
Expand source code
def predict(self, X):
    return self.model.predict(X)
def predict_proba(self, X)
Expand source code
def predict_proba(self, X):
    return self.model.predict_proba(X)
def score(self, X, y)
Expand source code
def score(self, X, y):
    return self.model.score(X, y)
def set_fit_request(self: TaoTree, *, feature_names: Union[bool, ForwardRef(None), str] = '$UNCHANGED$', sample_weight: Union[bool, ForwardRef(None), str] = '$UNCHANGED$') ‑> TaoTree

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see :func:sklearn.set_config). Please see :ref:User Guide <metadata_routing> on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to fit.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version: 1.3

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:~sklearn.pipeline.Pipeline. Otherwise it has no effect.

Parameters

feature_names : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for feature_names parameter in fit.
sample_weight : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for sample_weight parameter in fit.

Returns

self : object
The updated object.
Expand source code
def func(**kw):
    """Updates the request for provided parameters

    This docstring is overwritten below.
    See REQUESTER_DOC for expected functionality
    """
    if not _routing_enabled():
        raise RuntimeError(
            "This method is only available when metadata routing is enabled."
            " You can enable it using"
            " sklearn.set_config(enable_metadata_routing=True)."
        )

    if self.validate_keys and (set(kw) - set(self.keys)):
        raise TypeError(
            f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments"
            f" are: {set(self.keys)}"
        )

    requests = instance._get_metadata_request()
    method_metadata_request = getattr(requests, self.name)

    for prop, alias in kw.items():
        if alias is not UNCHANGED:
            method_metadata_request.add_request(param=prop, alias=alias)
    instance._metadata_request = requests

    return instance
class TaoTreeClassifier (model_type: str = 'CART', n_iters: int = 20, model_args: dict = {'max_leaf_nodes': 15}, randomize_tree=False, update_scoring='accuracy', min_node_samples_tao=3, min_leaf_samples_tao=2, node_model='stump', node_model_args: dict = {}, reg_param: float = 0.001, weight_errors: bool = False, verbose: int = 0)

Base class for all estimators in scikit-learn.

Inheriting from this class provides default implementations of:

  • setting and getting parameters used by GridSearchCV and friends;
  • textual and HTML representation displayed in terminals and IDEs;
  • estimator serialization;
  • parameters validation;
  • data validation;
  • feature names validation.

Read more in the :ref:User Guide <rolling_your_own_estimator>.

Notes

All estimators should specify all the parameters that can be set at the class level in their __init__ as explicit keyword arguments (no *args or **kwargs).

Examples

>>> import numpy as np
>>> from sklearn.base import BaseEstimator
>>> class MyEstimator(BaseEstimator):
...     def __init__(self, *, param=1):
...         self.param = param
...     def fit(self, X, y=None):
...         self.is_fitted_ = True
...         return self
...     def predict(self, X):
...         return np.full(shape=X.shape[0], fill_value=self.param)
>>> estimator = MyEstimator(param=2)
>>> estimator.get_params()
{'param': 2}
>>> X = np.array([[1, 2], [2, 3], [3, 4]])
>>> y = np.array([1, 0, 1])
>>> estimator.fit(X, y).predict(X)
array([2, 2, 2])
>>> estimator.set_params(param=3).fit(X, y).predict(X)
array([3, 3, 3])

TAO: Alternating optimization of decision trees, with application to learning sparse oblique trees (Neurips 2018) https://proceedings.neurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-Abstract.html Note: this implementation learns single-feature splits rather than oblique trees.

Currently supports - given a CART tree, posthoc improve it with TAO - also works with HSTreeCV

Todo - update bottom to top otherwise input points don't get updated - update leaf nodes - support regression - support FIGS - support error-weighting - support oblique trees - support generic models at decision node - support pruning (e.g. if weights -> 0, then remove a node) - support classifiers in leaves

Parameters

model_type : str
'CART' or 'FIGS'
n_iters
Number of iterations to run TAO
model_args
Arguments to pass to the model
randomize_tree
Whether to randomize the tree before each iteration
min_node_samples_tao : int
Minimum number of samples in a node to apply tao
min_leaf_samples_tao : int
 
node_model : str
'stump' or 'linear'
reg_param
Regularization parameter for node-wise linear model (if node_model is 'linear')
verbose : int
Verbosity level
Expand source code
class TaoTreeClassifier(TaoTree, ClassifierMixin):
    pass

Ancestors

  • TaoTree
  • sklearn.base.BaseEstimator
  • sklearn.utils._estimator_html_repr._HTMLDocumentationLinkMixin
  • sklearn.utils._metadata_requests._MetadataRequester
  • sklearn.base.ClassifierMixin

Inherited members

class TaoTreeRegressor (model_type: str = 'CART', n_iters: int = 20, model_args: dict = {'max_leaf_nodes': 15}, randomize_tree=False, update_scoring='accuracy', min_node_samples_tao=3, min_leaf_samples_tao=2, node_model='stump', node_model_args: dict = {}, reg_param: float = 0.001, weight_errors: bool = False, verbose: int = 0)

Base class for all estimators in scikit-learn.

Inheriting from this class provides default implementations of:

  • setting and getting parameters used by GridSearchCV and friends;
  • textual and HTML representation displayed in terminals and IDEs;
  • estimator serialization;
  • parameters validation;
  • data validation;
  • feature names validation.

Read more in the :ref:User Guide <rolling_your_own_estimator>.

Notes

All estimators should specify all the parameters that can be set at the class level in their __init__ as explicit keyword arguments (no *args or **kwargs).

Examples

>>> import numpy as np
>>> from sklearn.base import BaseEstimator
>>> class MyEstimator(BaseEstimator):
...     def __init__(self, *, param=1):
...         self.param = param
...     def fit(self, X, y=None):
...         self.is_fitted_ = True
...         return self
...     def predict(self, X):
...         return np.full(shape=X.shape[0], fill_value=self.param)
>>> estimator = MyEstimator(param=2)
>>> estimator.get_params()
{'param': 2}
>>> X = np.array([[1, 2], [2, 3], [3, 4]])
>>> y = np.array([1, 0, 1])
>>> estimator.fit(X, y).predict(X)
array([2, 2, 2])
>>> estimator.set_params(param=3).fit(X, y).predict(X)
array([3, 3, 3])

TAO: Alternating optimization of decision trees, with application to learning sparse oblique trees (Neurips 2018) https://proceedings.neurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-Abstract.html Note: this implementation learns single-feature splits rather than oblique trees.

Currently supports - given a CART tree, posthoc improve it with TAO - also works with HSTreeCV

Todo - update bottom to top otherwise input points don't get updated - update leaf nodes - support regression - support FIGS - support error-weighting - support oblique trees - support generic models at decision node - support pruning (e.g. if weights -> 0, then remove a node) - support classifiers in leaves

Parameters

model_type : str
'CART' or 'FIGS'
n_iters
Number of iterations to run TAO
model_args
Arguments to pass to the model
randomize_tree
Whether to randomize the tree before each iteration
min_node_samples_tao : int
Minimum number of samples in a node to apply tao
min_leaf_samples_tao : int
 
node_model : str
'stump' or 'linear'
reg_param
Regularization parameter for node-wise linear model (if node_model is 'linear')
verbose : int
Verbosity level
Expand source code
class TaoTreeRegressor(TaoTree, RegressorMixin):
    pass

Ancestors

  • TaoTree
  • sklearn.base.BaseEstimator
  • sklearn.utils._estimator_html_repr._HTMLDocumentationLinkMixin
  • sklearn.utils._metadata_requests._MetadataRequester
  • sklearn.base.RegressorMixin

Inherited members