Expand source code
from __future__ import division

__author__ = 'Victor Ruiz, vmr11@pitt.edu'

from math import log

import pandas as pd


def entropy(data_classes, base=2):
    '''
    Computes the entropy of a set of labels (class instantiations)
    :param base: logarithm base for computation
    :param data_classes: Series with labels of examples in a dataset
    :return: value of entropy
    '''
    if not isinstance(data_classes, pd.core.series.Series):
        raise AttributeError('input array should be a pandas series')
    classes = data_classes.unique()
    N = len(data_classes)
    ent = 0  # initialize entropy

    # iterate over classes
    for c in classes:
        partition = data_classes[data_classes == c]  # data with class = c
        proportion = len(partition) / N
        # update entropy
        ent -= proportion * log(proportion, base)

    return ent


def cut_point_information_gain(dataset, cut_point, feature_label, class_label):
    '''
    Return de information gain obtained by splitting a numeric attribute in two according to cut_point
    :param dataset: pandas dataframe with a column for attribute values and a column for class
    :param cut_point: threshold at which to partition the numeric attribute
    :param feature_label: column label of the numeric attribute values in data
    :param class_label: column label of the array of instance classes
    :return: information gain of partition obtained by threshold cut_point
    '''
    if not isinstance(dataset, pd.core.frame.DataFrame):
        raise AttributeError('input dataset should be a pandas data frame')

    entropy_full = entropy(dataset[class_label])  # compute entropy of full dataset (w/o split)

    # split data at cut_point
    data_left = dataset[dataset[feature_label] <= cut_point]
    data_right = dataset[dataset[feature_label] > cut_point]
    (N, N_left, N_right) = (len(dataset), len(data_left), len(data_right))

    gain = entropy_full - (N_left / N) * entropy(data_left[class_label]) - \
           (N_right / N) * entropy(data_right[class_label])

    return gain

Functions

def cut_point_information_gain(dataset, cut_point, feature_label, class_label)

Return de information gain obtained by splitting a numeric attribute in two according to cut_point :param dataset: pandas dataframe with a column for attribute values and a column for class :param cut_point: threshold at which to partition the numeric attribute :param feature_label: column label of the numeric attribute values in data :param class_label: column label of the array of instance classes :return: information gain of partition obtained by threshold cut_point

Expand source code
def cut_point_information_gain(dataset, cut_point, feature_label, class_label):
    '''
    Return de information gain obtained by splitting a numeric attribute in two according to cut_point
    :param dataset: pandas dataframe with a column for attribute values and a column for class
    :param cut_point: threshold at which to partition the numeric attribute
    :param feature_label: column label of the numeric attribute values in data
    :param class_label: column label of the array of instance classes
    :return: information gain of partition obtained by threshold cut_point
    '''
    if not isinstance(dataset, pd.core.frame.DataFrame):
        raise AttributeError('input dataset should be a pandas data frame')

    entropy_full = entropy(dataset[class_label])  # compute entropy of full dataset (w/o split)

    # split data at cut_point
    data_left = dataset[dataset[feature_label] <= cut_point]
    data_right = dataset[dataset[feature_label] > cut_point]
    (N, N_left, N_right) = (len(dataset), len(data_left), len(data_right))

    gain = entropy_full - (N_left / N) * entropy(data_left[class_label]) - \
           (N_right / N) * entropy(data_right[class_label])

    return gain
def entropy(data_classes, base=2)

Computes the entropy of a set of labels (class instantiations) :param base: logarithm base for computation :param data_classes: Series with labels of examples in a dataset :return: value of entropy

Expand source code
def entropy(data_classes, base=2):
    '''
    Computes the entropy of a set of labels (class instantiations)
    :param base: logarithm base for computation
    :param data_classes: Series with labels of examples in a dataset
    :return: value of entropy
    '''
    if not isinstance(data_classes, pd.core.series.Series):
        raise AttributeError('input array should be a pandas series')
    classes = data_classes.unique()
    N = len(data_classes)
    ent = 0  # initialize entropy

    # iterate over classes
    for c in classes:
        partition = data_classes[data_classes == c]  # data with class = c
        proportion = len(partition) / N
        # update entropy
        ent -= proportion * log(proportion, base)

    return ent