Module imodelsx.d3.step1_get_extreme
Functions
def cv(pos, neg, K)
-
Expand source code
def cv(pos, neg, K): return [ { 'train_pos': [p for i, p in enumerate(pos) if i % K != k], 'train_neg': [n for i, n in enumerate(neg) if i % K != k], 'test_pos': [p for i, p in enumerate(pos) if i % K == k], 'test_neg': [n for i, n in enumerate(neg) if i % K == k], } for k in range(K) ]
def get_spans(tok, text)
-
Expand source code
def get_spans(tok, text): be = tok(text) length = len(be['input_ids']) results = [] for i in range(length): if i in (0, length - 1): results.append((0, 0)) else: start, end = be.token_to_chars(i) results.append((start, end)) return results
def return_extreme_values(pos, neg, num_steps=2000, num_folds=4, batch_size=16)
-
Expand source code
def return_extreme_values(pos, neg, num_steps=2000, num_folds=4, batch_size=16): pos2score, neg2score = {}, {} pos2highlight, neg2highlight = {}, {} for fold_idx, cv_dict in enumerate(cv(pos, neg, num_folds)): print('fold', fold_idx + 1, '/', num_folds) test_scores = train_and_eval(cv_dict, num_steps, batch_size) for pos_text, score, highlight in zip(cv_dict['test_pos'], test_scores['test_pos_scores'], test_scores['test_pos_highlight']): pos2score[pos_text] = score pos2highlight[pos_text] = highlight for neg_text, score, highlight in zip(cv_dict['test_neg'], test_scores['test_neg_scores'], test_scores['test_neg_highlight']): neg2score[neg_text] = score neg2highlight[neg_text] = highlight return { 'pos2score': pos2score, 'neg2score': neg2score, 'pos2highlight': pos2highlight, 'neg2highlight': neg2highlight }
def train_and_eval(cv_dict, num_steps=2000, batch_size=16)
-
Expand source code
def train_and_eval(cv_dict, num_steps=2000, batch_size=16): max_length = 128 train_data_dicts = list(chain( [{'input': x, 'label': 1} for x in cv_dict['train_pos']], [{'input': x, 'label': 0} for x in cv_dict['train_neg']], )) # model = RobertaForSequenceClassification.from_pretrained(pretrain_model).to(device) # model = RoBERTaSeq().to(device) model = RoBERTaSeqAttn().to(device) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=5e-5) scheduler = get_linear_schedule_with_warmup(optimizer, 400, num_steps) tok = AutoTokenizer.from_pretrained(pretrain_model) for step in tqdm.trange(num_steps): random.shuffle(train_data_dicts) input_texts = [d['input'] for d in train_data_dicts[:batch_size]] inputs = tok(input_texts, return_tensors='pt', truncation=True, max_length=max_length, padding=True).to(device) labels = torch.tensor([d['label'] for d in train_data_dicts[:batch_size]]).to(device) outputs = model(**inputs, labels=labels) loss = outputs['loss'] loss.backward() if step % 2 == 1: optimizer.step() scheduler.step() optimizer.zero_grad() def evaluate(texts): all_logits, all_highlights = [], [] cur_start = 0 while cur_start < len(texts): texts_ = texts[cur_start:cur_start + batch_size] inputs = tok(texts_, return_tensors='pt', truncation=True, max_length=max_length, padding=True).to(device) model_output_dict = model(**inputs) logits = lsm(model_output_dict['logits'].detach().cpu()).numpy().tolist() all_highlights.extend(model_output_dict['highlight']) all_logits.extend(logits) cur_start += batch_size assert len(all_logits) == len(texts) all_spans = [get_spans(tok, text) for text in texts] assert len(all_spans) == len(all_highlights) for a, b in zip(all_spans, all_highlights): assert len(a) == len(b) or len(a) >= max_length highlights = [ {s: h for s, h in zip(spans, highlights) if s != (0, 0)} for spans, highlights in zip(all_spans, all_highlights) ] return { 'logits': np.array(all_logits), 'highlights': highlights } pos_eval_dict = evaluate(cv_dict['test_pos']) pos_logits, pos_highlights = pos_eval_dict['logits'][:,1], pos_eval_dict['highlights'] neg_eval_dict = evaluate(cv_dict['test_neg']) neg_logits, neg_highlights = neg_eval_dict['logits'][:,0], neg_eval_dict['highlights'] return { 'test_pos_scores': pos_logits, 'test_neg_scores': neg_logits, 'test_pos_highlight': pos_highlights, 'test_neg_highlight': neg_highlights }
Classes
class RoBERTaSeq
-
Expand source code
class RoBERTaSeq(nn.Module): def __init__(self): super().__init__() self.model = AutoModelForSequenceClassification.from_pretrained(pretrain_model) def forward(self, **inputs): model_outputs = self.model(**inputs) model_output_dict = vars(model_outputs) seq_lengths = torch.sum(inputs['attention_mask'], dim=-1).detach().cpu().numpy() model_output_dict['highlight'] = [[1./seq_length for _ in range(seq_length)] for seq_length in seq_lengths] return model_output_dict
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:
to
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Ancestors
- torch.nn.modules.module.Module
Methods
def forward(self, **inputs) ‑> Callable[..., Any]
-
Expand source code
def forward(self, **inputs): model_outputs = self.model(**inputs) model_output_dict = vars(model_outputs) seq_lengths = torch.sum(inputs['attention_mask'], dim=-1).detach().cpu().numpy() model_output_dict['highlight'] = [[1./seq_length for _ in range(seq_length)] for seq_length in seq_lengths] return model_output_dict
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
class RoBERTaSeqAttn
-
Expand source code
class RoBERTaSeqAttn(nn.Module): def __init__(self): super().__init__() self.model = AutoModel.from_pretrained(pretrain_model) self.clf_layer = nn.Linear(self.model.config.hidden_size, 2) self.attn_layer = nn.Linear(self.model.config.hidden_size, 1) self.sm = nn.Softmax(dim=-1) self.lsm = nn.LogSoftmax(dim=-1) self.loss_func = nn.NLLLoss() def forward(self, **inputs): last_hidden_state = self.model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask']).last_hidden_state attn_logits = self.attn_layer(last_hidden_state).squeeze(axis=-1) attn_logits[inputs['attention_mask'] == 0] = float('-inf') attention = self.sm(attn_logits) seq_lengths = torch.sum(inputs['attention_mask'], dim=-1).detach().cpu().numpy() aggregated_repr = torch.einsum('bs,bsh->bh', attention, last_hidden_state) logits = self.lsm(self.clf_layer(aggregated_repr)) return_dict = { 'logits': logits, 'highlight': [attention[i][:s].detach().cpu().numpy() for i, s in enumerate(seq_lengths)] } if 'labels' in inputs: loss = self.loss_func(logits, inputs['labels']) return_dict['loss'] = loss return return_dict
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their parameters converted when you call :meth:
to
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Ancestors
- torch.nn.modules.module.Module
Methods
def forward(self, **inputs) ‑> Callable[..., Any]
-
Expand source code
def forward(self, **inputs): last_hidden_state = self.model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask']).last_hidden_state attn_logits = self.attn_layer(last_hidden_state).squeeze(axis=-1) attn_logits[inputs['attention_mask'] == 0] = float('-inf') attention = self.sm(attn_logits) seq_lengths = torch.sum(inputs['attention_mask'], dim=-1).detach().cpu().numpy() aggregated_repr = torch.einsum('bs,bsh->bh', attention, last_hidden_state) logits = self.lsm(self.clf_layer(aggregated_repr)) return_dict = { 'logits': logits, 'highlight': [attention[i][:s].detach().cpu().numpy() for i, s in enumerate(seq_lengths)] } if 'labels' in inputs: loss = self.loss_func(logits, inputs['labels']) return_dict['loss'] = loss return return_dict
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.