Module imodelsx.data

Expand source code
import datasets
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
datasets.logging.set_verbosity_error()

def load_huggingface_dataset(
    dataset_name: str,
    subsample_frac: float = 1.0,
    binary_classification: bool = False,
    return_lists: bool = False,
    label_name: str = 'label',
):
    """Load text dataset from huggingface (with train/validation splits) + return the relevant dataset key
    Params
    ------
    subsample_frac: float
        Only use this fraction of the training data
    binary_classification: bool
        Whether to convert a multiclass task into a binary one
        Unless this function is modified, will take the class number with the lowest to indexes
    return_lists: bool
        Whether to return pre-split lists rather than HF dataset

    Dataset name        |    n_train     |    n_classes |
    -----------------------------------------------------
    rotten_tomatoes     |    ~9k         |    2
    sst2                |    ~68k        |    2
    imdb                |    ~25k        |    2         | note: these are relatively long
    tweet_eval          |    ~10k        |    2
    financial_phrasebank|    ~2.3k       |    3
    emotion             |    ~18k        |    6         | note: this was removed, now has clones like dair-ai/emotion
    ag_news             |    ~120k       |    4
    dbpedia_14          |    50K         |    14
    trec                |    5.5k        |    6
    -----------------------------------------------------
    csinva/fmri_language_responses | ~10k | 250 regression voxels

    Example
    -------
    dset, dataset_key_text = imodelsx.data.load_huggingface_dataset('ag_news')

    """
    # load dset
    if dataset_name == 'tweet_eval':
        dset = datasets.load_dataset('tweet_eval', 'hate')
    elif dataset_name == 'financial_phrasebank':
        train = datasets.load_dataset('financial_phrasebank', 'sentences_75agree',
                                      revision='main', split='train')
        idxs_train, idxs_val = train_test_split(
            np.arange(len(train)), test_size=0.33, random_state=13)
        dset = datasets.DatasetDict()
        dset['train'] = train.select(idxs_train)
        dset['validation'] = train.select(idxs_val)
    else:
        dset = datasets.load_dataset(dataset_name)

    # set up dataset_key_text
    dataset_key_text = 'text'
    if dataset_name in ['sst2', 'financial_phrasebank']:
        dataset_key_text = 'sentence'
    elif dataset_name == 'dbpedia_14':
        dataset_key_text = 'content'
    
    # set validation set
    if dataset_name in ['imdb', 'ag_news', 'csinva/fmri_language_responses', 'dbpedia_14', 'trec']:
        dset['validation'] = dset['test']

    # set up label key
    if label_name == 'label':
        if dataset_name == 'trec':
            dset['train'] = dset['train'].add_column('label', dset['train']['coarse_label'])
            dset['validation'] = dset['validation'].add_column('label', dset['validation']['coarse_label'])
    elif not label_name == 'label':
        dset['train'] = dset['train'].add_column('label', dset['train'][label_name])
        dset['validation'] = dset['validation'].add_column('label', dset['validation'][label_name])

    # subsample data
    if subsample_frac > 0:
        n = len(dset['train'])
        dset['train'] = dset['train'].select(np.random.choice(
            range(n), replace=False,
            size=int(n * subsample_frac)
        ))

    # convert to binary classifications
    if binary_classification and \
        len(np.unique(dset['train']['label'])) > 2 and \
            not dataset_name == 'csinva/fmri_language_responses':
        if dataset_name == 'financial_phrasebank':
            labels_to_keep_remap = {
                # dropping 1=neutral
                0: 1, # negative
                2: 0, # positive
            }
        elif dataset_name == 'emotion':
            labels_to_keep_remap = {
                0: 0, # sadness
                1: 1, # joy
            }
        elif dataset_name == 'ag_news':
            labels_to_keep_remap = {
                # 1 was "world" and 4 was "sci/tech"
                2: 0, # 2 was "sports"
                3: 1, # 3 was "business"
            }
        else:
            labels_to_keep_keys = np.sort(np.unique(dset['train']['label']))[:2]
            labels_to_keep_remap = {
                labels_to_keep_keys[i]: i for i in range(2)
            }
        
        # filter dset labels to only keep these labels
        dset['train'] = dset['train'].filter(lambda ex: ex["label"] in labels_to_keep_remap)
        dset['validation'] = dset['validation'].filter(lambda ex: ex["label"] in labels_to_keep_remap)

        # map these labels to 0/1
        dset['train'] = dset['train'].map(lambda ex: {'label': labels_to_keep_remap[ex['label']]})
        dset['validation'] = dset['validation'].map(lambda ex: {'label': labels_to_keep_remap[ex['label']]})
    
    if return_lists:
        X_train_text= dset['train'][dataset_key_text]
        y_train = np.array(dset['train']['label'])
        X_test_text = dset['validation'][dataset_key_text]
        y_test = np.array(dset['validation']['label'])
        return X_train_text, X_test_text, y_train, y_test
    else:
        return dset, dataset_key_text


def convert_text_data_to_counts_array(dset, dataset_key_text):
    v = CountVectorizer()
    X_train = v.fit_transform(dset['train'][dataset_key_text])
    y_train = dset['train']['label']
    X_test = v.transform(dset['validation'][dataset_key_text])
    y_test = dset['validation']['label']
    feature_names = v.get_feature_names_out().tolist()
    return X_train, X_test, y_train, y_test, feature_names

if __name__ == '__main__':
    dset, k = load_huggingface_dataset('ag_news', 1, binary_classification=False)
    print(dset)
    print(dset['train'])
    print(np.unique(dset['train']['label']))

    dset, k = load_huggingface_dataset('ag_news', 1, binary_classification=True)
    print(dset)
    print(np.unique(dset['train']['label']))

Functions

def convert_text_data_to_counts_array(dset, dataset_key_text)
Expand source code
def convert_text_data_to_counts_array(dset, dataset_key_text):
    v = CountVectorizer()
    X_train = v.fit_transform(dset['train'][dataset_key_text])
    y_train = dset['train']['label']
    X_test = v.transform(dset['validation'][dataset_key_text])
    y_test = dset['validation']['label']
    feature_names = v.get_feature_names_out().tolist()
    return X_train, X_test, y_train, y_test, feature_names
def load_huggingface_dataset(dataset_name: str, subsample_frac: float = 1.0, binary_classification: bool = False, return_lists: bool = False, label_name: str = 'label')

Load text dataset from huggingface (with train/validation splits) + return the relevant dataset key Params


subsample_frac: float Only use this fraction of the training data binary_classification: bool Whether to convert a multiclass task into a binary one Unless this function is modified, will take the class number with the lowest to indexes return_lists: bool Whether to return pre-split lists rather than HF dataset

Dataset name | n_train | n_classes |

rotten_tomatoes | ~9k | 2 sst2 | ~68k | 2 imdb | ~25k | 2 | note: these are relatively long tweet_eval | ~10k | 2 financial_phrasebank| ~2.3k | 3 emotion | ~18k | 6 | note: this was removed, now has clones like dair-ai/emotion ag_news | ~120k | 4 dbpedia_14 | 50K | 14 trec | 5.5k | 6


csinva/fmri_language_responses | ~10k | 250 regression voxels

Example

dset, dataset_key_text = imodelsx.data.load_huggingface_dataset('ag_news')

Expand source code
def load_huggingface_dataset(
    dataset_name: str,
    subsample_frac: float = 1.0,
    binary_classification: bool = False,
    return_lists: bool = False,
    label_name: str = 'label',
):
    """Load text dataset from huggingface (with train/validation splits) + return the relevant dataset key
    Params
    ------
    subsample_frac: float
        Only use this fraction of the training data
    binary_classification: bool
        Whether to convert a multiclass task into a binary one
        Unless this function is modified, will take the class number with the lowest to indexes
    return_lists: bool
        Whether to return pre-split lists rather than HF dataset

    Dataset name        |    n_train     |    n_classes |
    -----------------------------------------------------
    rotten_tomatoes     |    ~9k         |    2
    sst2                |    ~68k        |    2
    imdb                |    ~25k        |    2         | note: these are relatively long
    tweet_eval          |    ~10k        |    2
    financial_phrasebank|    ~2.3k       |    3
    emotion             |    ~18k        |    6         | note: this was removed, now has clones like dair-ai/emotion
    ag_news             |    ~120k       |    4
    dbpedia_14          |    50K         |    14
    trec                |    5.5k        |    6
    -----------------------------------------------------
    csinva/fmri_language_responses | ~10k | 250 regression voxels

    Example
    -------
    dset, dataset_key_text = imodelsx.data.load_huggingface_dataset('ag_news')

    """
    # load dset
    if dataset_name == 'tweet_eval':
        dset = datasets.load_dataset('tweet_eval', 'hate')
    elif dataset_name == 'financial_phrasebank':
        train = datasets.load_dataset('financial_phrasebank', 'sentences_75agree',
                                      revision='main', split='train')
        idxs_train, idxs_val = train_test_split(
            np.arange(len(train)), test_size=0.33, random_state=13)
        dset = datasets.DatasetDict()
        dset['train'] = train.select(idxs_train)
        dset['validation'] = train.select(idxs_val)
    else:
        dset = datasets.load_dataset(dataset_name)

    # set up dataset_key_text
    dataset_key_text = 'text'
    if dataset_name in ['sst2', 'financial_phrasebank']:
        dataset_key_text = 'sentence'
    elif dataset_name == 'dbpedia_14':
        dataset_key_text = 'content'
    
    # set validation set
    if dataset_name in ['imdb', 'ag_news', 'csinva/fmri_language_responses', 'dbpedia_14', 'trec']:
        dset['validation'] = dset['test']

    # set up label key
    if label_name == 'label':
        if dataset_name == 'trec':
            dset['train'] = dset['train'].add_column('label', dset['train']['coarse_label'])
            dset['validation'] = dset['validation'].add_column('label', dset['validation']['coarse_label'])
    elif not label_name == 'label':
        dset['train'] = dset['train'].add_column('label', dset['train'][label_name])
        dset['validation'] = dset['validation'].add_column('label', dset['validation'][label_name])

    # subsample data
    if subsample_frac > 0:
        n = len(dset['train'])
        dset['train'] = dset['train'].select(np.random.choice(
            range(n), replace=False,
            size=int(n * subsample_frac)
        ))

    # convert to binary classifications
    if binary_classification and \
        len(np.unique(dset['train']['label'])) > 2 and \
            not dataset_name == 'csinva/fmri_language_responses':
        if dataset_name == 'financial_phrasebank':
            labels_to_keep_remap = {
                # dropping 1=neutral
                0: 1, # negative
                2: 0, # positive
            }
        elif dataset_name == 'emotion':
            labels_to_keep_remap = {
                0: 0, # sadness
                1: 1, # joy
            }
        elif dataset_name == 'ag_news':
            labels_to_keep_remap = {
                # 1 was "world" and 4 was "sci/tech"
                2: 0, # 2 was "sports"
                3: 1, # 3 was "business"
            }
        else:
            labels_to_keep_keys = np.sort(np.unique(dset['train']['label']))[:2]
            labels_to_keep_remap = {
                labels_to_keep_keys[i]: i for i in range(2)
            }
        
        # filter dset labels to only keep these labels
        dset['train'] = dset['train'].filter(lambda ex: ex["label"] in labels_to_keep_remap)
        dset['validation'] = dset['validation'].filter(lambda ex: ex["label"] in labels_to_keep_remap)

        # map these labels to 0/1
        dset['train'] = dset['train'].map(lambda ex: {'label': labels_to_keep_remap[ex['label']]})
        dset['validation'] = dset['validation'].map(lambda ex: {'label': labels_to_keep_remap[ex['label']]})
    
    if return_lists:
        X_train_text= dset['train'][dataset_key_text]
        y_train = np.array(dset['train']['label'])
        X_test_text = dset['validation'][dataset_key_text]
        y_test = np.array(dset['validation']['label'])
        return X_train_text, X_test_text, y_train, y_test
    else:
        return dset, dataset_key_text