Module imodelsx.metrics
Functions
def auprc_score(y_true, y_pred)
-
Expand source code
def auprc_score(y_true, y_pred): """area under precision recall curve""" precision, recall, _ = precision_recall_curve(y_true, y_pred) return auc(recall, precision)
area under precision recall curve
def entropy_binary(y_mean: float) ‑> float
-
Expand source code
def entropy_binary(y_mean: float) -> float: return -y_mean * np.log2(y_mean) - (1 - y_mean) * np.log2(1 - y_mean)
def gini_binary(y_mean: float) ‑> float
-
Expand source code
def gini_binary(y_mean: float) -> float: """{0, 1} -> 1 {0.5} -> 0.5 """ return y_mean ** 2 + (1 - y_mean) ** 2
{0, 1} -> 1 {0.5} -> 0.5
def gini_score(y_true, y_pred)
-
Expand source code
def gini_score(y_true, y_pred): """Purer (more accurate) is better""" y_pred = y_pred.astype(bool) y_pred_sum = y_pred.sum() if y_pred_sum == 0 or y_pred_sum == y_pred.size: y_mean = y_true.mean() else: y_mean = y_true[y_pred].mean() return gini_binary(y_mean)
Purer (more accurate) is better