Module src.models
Expand source code
import torch
from torch import nn
import torch.nn.functional as F
class FNN(nn.Module):
def __init__(self, p):
super(FNN, self).__init__()
self.fc1 = nn.Linear(p, 100)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(100, 2)
self.use_softmax = True
def forward(self, x):
x = self.fc1(x)
x = self.relu1(x)
x = self.fc2(x)
if self.use_softmax:
x = F.softmax(x, dim=1)
return x
Classes
class FNN (p)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class FNN(nn.Module): def __init__(self, p): super(FNN, self).__init__() self.fc1 = nn.Linear(p, 100) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(100, 2) self.use_softmax = True def forward(self, x): x = self.fc1(x) x = self.relu1(x) x = self.fc2(x) if self.use_softmax: x = F.softmax(x, dim=1) return x
Ancestors
- torch.nn.modules.module.Module
Methods
def forward(self, x)
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code
def forward(self, x): x = self.fc1(x) x = self.relu1(x) x = self.fc2(x) if self.use_softmax: x = F.softmax(x, dim=1) return x