Module src.transforms
Expand source code
from copy import deepcopy
import torchvision.transforms as transforms
import numpy as np
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
def get_im(dset, idx):
'''Get numpy and torch image from dataset
'''
im = dset[idx][0]
im_np = deepcopy(im.numpy()).transpose((1, 2, 0))
im_torch = normalize(im).unsqueeze_(0)
return im_np, im_torch
def to_np(im_torch, unnormalize=False):
'''convert im_torch back to unnormalized numpy im
1 x 3 x 224 x 224 -> 224 x 224 x 3
'''
return deepcopy(im_torch.cpu().detach().numpy()[0]).transpose((1, 2, 0))
def unnormalize(im_np):
means = np.array([0.485/0.229, 0.456/0.224, 0.406/0.255]).T
stds = np.array([0.229, 0.224, 0.255]).T
im_np += means
im_np *= stds
return im_np
Functions
def get_im(dset, idx)
-
Get numpy and torch image from dataset
Expand source code
def get_im(dset, idx): '''Get numpy and torch image from dataset ''' im = dset[idx][0] im_np = deepcopy(im.numpy()).transpose((1, 2, 0)) im_torch = normalize(im).unsqueeze_(0) return im_np, im_torch
def to_np(im_torch, unnormalize=False)
-
convert im_torch back to unnormalized numpy im 1 x 3 x 224 x 224 -> 224 x 224 x 3
Expand source code
def to_np(im_torch, unnormalize=False): '''convert im_torch back to unnormalized numpy im 1 x 3 x 224 x 224 -> 224 x 224 x 3 ''' return deepcopy(im_torch.cpu().detach().numpy()[0]).transpose((1, 2, 0))
def unnormalize(im_np)
-
Expand source code
def unnormalize(im_np): means = np.array([0.485/0.229, 0.456/0.224, 0.406/0.255]).T stds = np.array([0.229, 0.224, 0.255]).T im_np += means im_np *= stds return im_np